欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

高一数学寒假作业:不同函数模型测试题

编辑: 路逍遥 关键词: 高一 来源: 记忆方法网

【导语】逍遥右脑为大家提供“高一数学寒假作业:不同函数模型测试题”一文,供大家参考使用:

  高一数学寒假作业:不同函数模型测试题一

  1.某工厂在2007年年底制订生产计划,要使2019年年底总产值在原有基础上翻两番,则总产值的年平均增长率为()

  A.5110-1B.4110-1

  C.5111-1D.4111-1

  解析:选B.由(1+x)10=4可得x=4110-1.

  2.某厂原来月产量为a,一月份增产10%,二月份比一月份减产10%,设二月份产量为b,则()

  A.a>bB.a

  C.a=bD.无法判断

  解析:选A.∵b=a(1+10%)(1-10%)=a(1-1100),

  ∴b=a×99100,∴b

  3.甲、乙两人在一次赛跑中,路程S与时间t的函数关系如图所示,则下列说法正确的是()

  A.甲比乙先出发

  B.乙比甲跑的路程多

  C.甲、乙两人的速度相同

  D.甲先到达终点

  解析:选D.当t=0时,S=0,甲、乙同时出发;甲跑完全程S所用的时间少于乙所用时间,故甲先到达终点.

  4.某种细胞分裂时,由1个分裂成2个,2个分裂成4个…这样,一个细胞分裂x次后,得到的细胞个数y与x的函数关系式是________.

  解析:该函数关系为y=2x,x∈N*.

  答案:y=2x(x∈N*)

  高一数学寒假作业:不同函数模型测试题二

  1.某动物数量y(只)与时间x(年)的关系为y=alog2(x+1),设第一年有100只,则到第七年它们发展到()

  A.300只B.400只

  C.500只D.600只

  解析:选A.由已知第一年有100只,得a=100,将a=100,x=7代入y=alog2(x+1),得y=300.

  2.马先生于两年前购买了一部手机,现在这款手机的价格已降为1000元,设这种手机每年降价20%,那么两年前这部手机的价格为()

  A.1535.5元B.1440元

  C.1620元D.1562.5元

  解析:选D.设这部手机两年前的价格为a,则有a(1-0.2)2=1000,解得a=1562.5元,故选D.

  3.为了改善某地的生态环境,政府决心绿化荒山,计划第一年先植树0.5万亩,以后每年比上年增加1万亩,结果第x年植树亩数y(万亩)是时间x(年数)的一次函数,这个函数的图象是()

  解析:选A.当x=1时,y=0.5,且为递增函数.

  4.某单位为鼓励职工节约用水,作出了如下规定:每月用水不超过10m3,按每立方米x元收取水费;每月用水超过10m3,超过部分加倍收费,某职工某月缴费16x元,则该职工这个月实际用水为()

  A.13m3B.14m3

  C.18m3D.26m3

  解析:选A.设用水量为am3,则有10x+2x(a-10)=16x,解得a=13.

  5.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y(万公顷)关于年数x(年)的函数关系较为近似的是()

  A.y=0.2xB.y=110(x2+2x)

  C.y=2x10D.y=0.2+log16x

  解析:选C.将x=1,2,3,y=0.2,0.4,0.76分别代入验算.

  6.某工厂12月份的产量是1月份产量的7倍,那么该工厂这一年中的月平均增长率是()

  A.711B.712

  C.127-1D.117-1

  解析:选D.设1月份产量为a,则12月份产量为7a.设月平均增长率为x,则7a=a(1+x)11,

  ∴x=117-1.

  高一数学寒假作业:不同函数模型测试题三

  1.某汽车油箱中存油22kg,油从管道中匀速流出,200分钟流尽,油箱中剩余量y(kg)与流出时间x(分钟)之间的函数关系式为__________________.

  解析:流速为22200=11100,x分钟可流11100x.

  答案:y=22-11100x

  2.某工厂生产某种产品的月产量y与月份x之间满足关系y=a•0.5x+b.现已知该厂今年1月份、2月份生产该产品分别为1万件、1.5万件.则此工厂3月份该产品的产量为________万件.

  解析:由已知得0.5a+b=10.52a+b=1.5,解得a=-2b=2.

  ∴y=-2•0.5x+2.当x=3时,y=1.75.

  答案:1.75

  3.假设某商品靠广告销售的收入R与广告费A之间满足关系R=aA,那么广告效应D=aA-A,当A=________时,取得最大值.

  解析:D=aA-A=-(A-a2)2+a24,

  当A=a2,即A=a24时,D最大.

  答案:a24

  4.将进货价为8元的商品按每件10元售出,每天可销售200件;若每件的售价涨0.5元,其销售量减少10件,问将售价定为多少时,才能使所赚利润最大?并求出这个最大利润.

  解:设每件售价提高x元,利润为y元,

  则y=(2+x)(200-20x)=-20(x-4)2+720.

  故当x=4,即定价为14元时,每天可获利最多为720元.

  5.燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log2Q10,单位是m/s,其中Q表示燕子的耗氧量.

  (1)试计算:燕子静止时的耗氧量是多少个单位?

  (2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?

  解:(1)由题意知,当燕子静止时,它的速度为0,代入题目所给公式可得

  0=5log2Q10,解得Q=10,

  即燕子静止时的耗氧量为10个单位.

  (2)将耗氧量Q=80代入公式得

  v=5log28010=5log28=15(m/s),

  即当一只燕子耗氧量为80个单位时,它的飞行速度为15m/s.


本文来自:逍遥右脑记忆 /gaoyi/1133273.html

相关阅读:福建省长乐二中等五校2015-2016学年高一上学期期中联考数学试题
江西省高安二中2013-2014年度高一上学期期中考试数学试题(奥赛
对数同步检测题(有答案))
云南省泸西县泸源中学2015—2015学年高一上学期期中考试数学试题
【名师解析】内蒙古包头市一中2015-2016学年高一上学期期中考试