1.相似三角形对应高的比、对应中线的比,对应角平分线的比都等于相似比;
2.相似三角形周长之比等于相似比;
3.相似三角形面积之比等于相似比的平方.
以上诸多相似三角形的性质,丰富了与角、面积等相关的知识方法,开阔了研究角、面积等问题的视野.
例题求解
【例1】如图,梯形ABCD中,AD∥BC(AD
思路点拨 只需求 的值,而题设条件与面积相关,应求出 的值,注意图形中隐含的丰富的面积关系.
注 相似三角形的性质及比例线段的性质,在生产、生活中有广泛的应用.
人类第一次运用相 似原理进行测量,是2000多年前泰勒斯测金字塔的高度,泰勒斯是古希腊著名学者,有“科学之父”的美称.他把逻辑论证引进了数学,确保了数学命题的正确
性.使具有不 可动摇的说明力.
【例2】如图,在平行四边形ABCD中.E为CD上一点,DE:CE=2:3,连结AE、BE、BD,且AE、BD交于点 F,则S△DEF:S△EBF :S△ABF=( )
A.4:10:25 B.4:9:25 C.2:3:5 D.2:5:25
(黑龙江省中考题)
思路点拨 运用与面积相关知识,把面积比转化为线段比.
【例3】如图,有一批形状大小相同的不锈钢片,呈直角三角形,已知∠C=90°,AB=5cm,BC=3?,试设计一种 方案,用这批不锈钢片裁出面积达最大的正方形不锈钢片,并求出这种正方形不锈钢片的边长.
思路点拨 要在三角形内裁出面积最大的正方形,那么这正方形所有顶点应落在△ABC的边上,先画出不同方案,把每种方案中的正方形边长求出.
注 本例是一道有实际应用背景的开放性题型,通过分析、推理、构思可能的方 案,再通过比较、鉴别、筛选出最佳的设计方案,问题虽简单,但基本呈现了现实的生产中产生最佳设计方案的基本思路.
【例4】 如图.在△ABC的内部选取一点P,过P点作3条分别与△ABC的三边平行的直线,这样所得的3个三角形 、 、 的面积分别为4、9和49,求△ABC的面积.
(美国数学邀请赛试题)
思路点拔 图中有相似三角形、平行四边形,通过相似三角形性质建立面积关系式,关键是恰当选择相似比,注意等线段的代换.追求形式上的统一.
【例5】 如图,△ABC中.D、E分别是边 BC、AB上的点,且∠l=∠2=∠3,如果△ABC、△EBD、△ADC的周长依次是 、m1、m2,证明: .
(全国初中数学联赛试题)
思路点拨 把周长的比用相应线段比表示,力求统一,得到同?线段比的代数式,通过代数变形证明.
注 例4还隐舍着下列重要结论:
(1)△FDP∽△IPE∽△PHG∽△ABC;
(2) ;
(3) .
学力训练
1.如图,已知DE∥BC,CD和BE相交于O,若S△DOE:S△COB=9:16,则AD:DB= .
2.如图,把正方形ABCD沿着对角线AC的方向移动到正方形A'B'C'D'的 位置,它们的重叠部分(图中的阴影部分)的面积是正方形ABCD面积的一半,若AC= ,则正方形移动的距离AA'是 . (江西省中考题)
3.若正方形的4个顶点分别 在直角三角形的3条边上,直角三角形的两直角边的长分别为3cm和4cm,则此正方形的边长为 . (武汉市中考题)
4.阅读下面的短文,并解答下列问题:
我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同.就把它们叫做相似体.
如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比:a:b,设S甲:S乙分别表示这两个正方体的表面积,则 ,又设V甲、V乙分别表示这两个正方体的体积,则 .
(1)下列几何体中,一定属于相似体的是( )
A.两个球体 B.两个圆锥体 C.两个圆柱体 D.两个长方体
(2)请 归纳出相似体的3条主要性质:
①相似体的一切对应线段(或弧)长的比等于 ;
②相似体表面积的比等于 ;
③相似体体积的比等于 . (江苏省泰州市中考题)
5.如图,一张矩形报纸ABCD的长AB=acm,宽BC=b?,E、F分别是AB、CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a:b于( )
A. :1 B.1: C. :1 D.1: (2004年南京市中考题)
6.如图,D为△ABC的边AC上的一点,∠DBC=∠A,已知BC= ,△BCD与△ABC的面积的比是2:3,则CD的长是( )
A. B. C. D.
7.如图,在正三角形ABC中,D、E分别在AC、AB上,且 ,AE=BE,则有( )
A.△AED∽△BED B.△AED∽△CBD
C.△AED∽△ABD D.△BAD∽△BCD
(2001年 杭州市中考题)
8.如图,已知△ABC中,DE∥FG∥BC,且AD:FD:FB=1:2:3,则S△ADE:S四边形DFGE:S四边形FBCG等于( )
A.1:9:36 B.l:4:9 C.1:8:27 D.1:8:36
9.如图 ,已知梯形ABCD中,AD∥BC,∠ACD=∠B,求证: .
10.如图,在平行四边形ABCD中,过点B作BE⊥CD于E,连结AE,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD;
(2)若AB=4,∠BAE=30°,求AE的长;
(3)在(1)、(2)的条件下,若AD=3,求BF的长. (2003年长沙市中考题)
11.如图,在△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与点A、C不重合),Q点在BC上.
(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;
(3)试问:在AB上是否存在点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由,若存在,请求出PQ的长. (厦门市中考题)
12.如图,在△ABC中,AB=AC= ,BC=2,在BC上有100个不同的点Pl、P2、…P100,过这100个点分别作△ABC的内接矩形P1E1F1G1,P2E2F2G2…P100E100F100G100,设每个内接矩形的周长分别为L1、L2,…L100,则L1+L2+…+L100= . (安徽省竞赛题)
13.如图,在△ABC中,DE∥FG∥BC,GI∥EF∥AB,若△ADE、△EFG、△GIC的面积分别为20cm2、45cm2、80cm2,则△ABC的面积为 .
14.如图,一个边长为3、4、5厘米的直角三角形的一个顶点与正方形的顶点B重合,另两个顶点分别在正方形的两条边AD、DC上,那么这个正方形的面积是 厘米2.
( “希望杯”邀请赛试题)
15.如图,正方形ABCD中,AE=EF=FB,BG= 2CG,DE,DF分别交AG于P、Q,以下说法中,不正确的是( )
A.AG⊥FD B.AQ:QG=6,7
C.EP :PD=2 : 11 D.S四边形GCDQ:S四边形BGQF=17:9 (2002年重庆市竞赛题)
16.如图,梯形ABCD中,AB∥CD,且CD=3AB,EF∥CD,EF将梯形ABCD分成面积相等的两部分,则AE:ED等于( )
A.2 B. C. D.
17.如图,正方形OPQR内接于△ABC,已知△AOR、△BOP和△CRQ的面积分别是S1=1,S2=3和S3=1,那么正方形OPQR的边长是( )
A. B. C.2 D.3
18.在一块锐角三角形的余料上,加工成正方形零件,使正方形的4个顶点都在三角形边上,若三角形的三边长分别为 a、b、c,且a>b>c d,问正方形的2个顶点放在哪条边上可使加工出来的正方形零件面积最大?
19.如图,△PQR和△P′Q′R′,是两个全等的等边三角形,它们的重叠部分是一个六边形ABCDEF,设这个六边形的边长为AB= a1,BC =b1,CD= a2,DE= b2,EF= a3,FA =b3 .求证 :a1 +a2 +a3= b1+ b2 +b3.
20.如图,在△ABC中,AB=4,D在AB边上移动(不与A、B重合),DE∥BC交AC于E,连结CD,设S△ABC= S,S△DEC=S1.
(1)当D为AB中点时,求 的值;
(2)若AD= x, ,求 与x之间的关系式,并指出x的取值范围;
(3)是否存在点D,使得 成立?若存在,求出D点位置;若不存在,请说明理由.
(福州市中考题)
21.已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题:
(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交于点C,D.
①在图甲中,证明:PC=PD;
②在图乙中,点G是CD与OP的交点,且PG= PD,求△POD与△PDG的面积之比.
本文来自:逍遥右脑记忆 /chuer/76183.html
相关阅读:一元一次不等式组
实数
八年级数学实践与探索
整式的乘法
《三角形全等的判定:HL》学案