课型:复习
学习目标(学习重点):
1.了解轴对称与轴对称图形,会准确画出轴对称 图形,找出对称轴、对称点等.
2.能熟练应用轴对称的性质.
3.复习线段的垂直平分线,角平分线的性质及推论,并能加以灵活运用.
例题:
例1.(1)下列说法中,正确的个数是( )
①轴对 称图形只有一条对称轴,②轴对称图形的对称轴是一条线段,③两个图形成轴对称,这两个图形是全等图形,④全等的两个图形一定成轴对称,⑤轴对称图形是指一个图形,而轴对称是指两个图形而言.
A.1个 B.2个 C.3个 D.4个
(2)如图在一个规格为6 ×12(即6×12个小正方形)的球台上,有两个小球 A,B.若击打小球A,经过球台边的反弹后,恰好击中小球B,那么小球A击出时,应瞄准球台边上的点( )
A.P1 B.P2 C.P3 D.P4
例2.作图题(1)作 出图1中△ABC关于直线l的对称图形;
(2)如图2,∠BAC=60°,点P在边AC上,试用带刻度的直尺和量角器,在∠BAC内部找一点O,使点O到A、P的距离相等,且到∠BAC的两边的距离相等.
图1 图2
例3.已知:如图,△ABC中,△ABC的外角平分线AD,交BC的垂直平分线于D点,DE⊥AB于点E,DF⊥AC于点F,
(1)求证:BE=CF;
(2 )若AB=15,AC=7,求AE的长.
课后续助:
1.点A和点B关于直线l对称 ,对直线l任意一点P,必有PA____PB
2.对称图形________有一条对称轴,________有两条对称轴,_____ ___有四条对 称轴,_______有无数条对称轴.(各填上一个图形即可) .
3.到三角形的三个顶点的距离相等的点是___________的交点.到三角形的三边的距离相等的点是___________的交点.
4.如果△ A BC与△A/B/C/关于直线l对称,且∠A=500,∠B/=700,那么
∠C/ =___ _.
5.如图,点P在∠AOB内,PM⊥OA于M,PN⊥OB于N,且PM=PN,连结OP,则OP是________________.依据是_______________ ________________.
6.如图,AB=AC,AC的垂直平分线交BC于D,垂足为E,
若AB=10,△ABD的周长为23,求△ABC的周长.
7.如图,有一个三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形 ,使顶点C落在AB边上的点E处,折痕为BD,求△AED的周长.
8.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,DE⊥BC于D,DE=DC.
求证:BC=AB+AE.
9.如图,在四边形ABCD中,BC>BA,AD=CD,
BD平分∠ABC,试说明:∠A+∠C=180°.
本文来自:逍遥右脑记忆 /chuer/62200.html
相关阅读:实数
整式的乘法
一元一次不等式组
《三角形全等的判定:HL》学案
八年级数学实践与探索