【—轴对称及其应用】知识要领:在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
轴对称及其应用
譬如:如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中.
应用试题
例1 △ABC中,为∠A外角平分线上一点,求证:PB+PC>AB+AC.
分析:由于角平分线是角的对称轴,作AC关于AP的轴对称图形AD,连结DP,CP,则DP=CP,BD=AB+AC.这样,把 AB+AC,AC,PB,PC集中到△BDP中,从而由PB+PD>BD,可得PB+PC>AB+AC.
证:(略).
点评:通过变为轴对称图形后,起到相对集中条件的作用,又有将折线化直的作用(如AB+AC化直为BD).
例2等腰梯形的对角线互相垂直,且它的中位线等于,求此梯形的高.
解:如图3.设等腰梯形AD∥BC,AB=DC,对角线AC与BD相交于O,且AC⊥BD,中位线EF=m.过AD,BC的中点M,N作直线,由等腰梯形ABCD关于直线MN成轴对称图形,∴O点在MN上,且OA=OD,OB=OC,AM=DM,BN=CN.又 AC⊥BD,故△AOD和△BOC均为等腰直角三角形.2OM=AD,2ON=BC.∵AD+BC=2EF=2m,∴2OM+2ON=2m.
∴OM+ON= ,所以梯形高MN=m.
知识归纳:等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等。
本文来自:逍遥右脑记忆 /chuzhong/180272.html
相关阅读:初中数学正方形的几何知识点
初中数学角的公式大全
学习初中数学的方法之高质量练习
平行四边形?初中数学题精选
浅谈初中数学作业设计有效性的实践与研究