欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

最新数学八年级巩固训练《直线与平面平行的判定》

编辑: 路逍遥 关键词: 八年级 来源: 记忆方法网

最新数学八年级巩固训练《直线与平面平行的判定》

一、教学内容分析 本节教材选自人教A版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。 二、学生学习情况分析 任教的学生在年段属中下程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。 三、设计思想 本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。 四、教学目标 1.知识与技能 (1)掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。 (2)培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。进一步培养学生观察、发现的能力和空间想象能力。 2.过程与方法 学生通过观察图形,借助已有知识,掌握直线与平面平行的判定定理。 3.情感态度与价值观 (1)让学生亲身经历数学研究过程,体验创造激情,享受成功喜悦,感受数学魅力。 (2)培养学生逻辑思维能力的同时,养成学生办事认真的习惯和实事求是的精神。 五、教学重点与难点 (1)重点:直线和平面平行的判定定理的探索过程及应用。 (2)难点:判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。 六、教学过程设计 (一)知识准备、新课引入 提问1:根据公共点的情况,空间中直线a和平面有哪几种位置关系?并完成下表:(多媒体幻灯片演示) 位置关系 公共点 符号表示 图形表示 我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a 提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。 【设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。】 (二)判定定理的探求过程 1.直观感知 提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗? 生1:例举日光灯与天花板,树立的电线杆与墙面。 生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。 【学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。】 2.动手实践 教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。 【设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。】 3.探究思考 (1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线 ②平面内一条直线 ③这两条直线平行 (2)如果平面外的直线a与平面内的一条直线b平行,那么直线a与平面平行吗? 4.归纳确认:(多媒体幻灯片演示) 直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。 简单概括:(内外)线线平行线面平行 符号表示: 作用:判定或证明线面平行。 关键:在平面内找(或作)出一条直线与面外的直线平行。 思想:空间问题转化为平面问题 (三)定理运用,问题探究(多媒体幻灯片演示) 1.想一想: (1)判断下列命题的真假?说明理由: ①如果一条直线不在平面内,则这条直线就与平面平行( ) ②过直线外一点可以作无数个平面与这条直线平行( ) ③一直线上有二个点到平面的距离相等,则这条直线与平面平行( ) (2)若直线a与平面内无数条直线平行,则a与的位置关系是( ) A、a∥ B、a C、a∥或a D、 【学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。】 2.作一作: 设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由? 先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。 【设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。】


本文来自:逍遥右脑记忆 /chuer/754920.html

相关阅读:2012年八年级上册数学第三次月考试题
八年级数学上册六套期末试卷(沪科版带答案)
2015年秋季学期高三语文第一次检测考试卷(含答案)
2013年初二上册数学期中测试题(人教版)
2018年秋八年级数学上《6.3一次函数的图像》同步练习(苏科版带