欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

六年级数学上册第四单元圆教案

编辑: 路逍遥 关键词: 数学教案 来源: 记忆方法网



第四单元 圆
单元目标:
1、认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。
2、学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
3、独立自学,使学生初步认识弧、圆心角和扇形。
4、使学生认识思对称图形,知道轴对称的含义,能找出轴对称图形的对称轴。
5、通过介绍圆周率的史料,使学生受到爱国主义教育。
单元重点:
1、认识圆和轴对称图形;
2、掌握圆的周长和面积的计算公式。
单元难点:
理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆。

1.认识圆
(1)圆的认识
目标:
1、学生认识圆,掌握圆的特征,理解直径与半径的关系。
2、会使使用工具画圆。
3、培养学生观察、分析、综合、概括及动手操作能力。
重点:
圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。
教学难点:画圆的方法,认识圆的特征。
教学过程:
一、自学
1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?

长方形 正方形 平行四边形 三角形 梯形
2、示圆片图形:(1)圆是用什么线围成的?(曲线图形)
3、举例:生活中有哪些圆形的物体?
二、议学
(一)认识圆的特征。
1、学生自己在准备好的纸上画一个圆,并动手剪下。
2、动手折一折。
(1)折过2次后,你发现了什么?
(两折痕的交点叫做圆心,圆心一般用字母O表示)
(2)再折出另外两条折痕,看看圆心是否相同。
3、认识直径和半径。
(1)将折痕用铅笔画出,比一比是否相等?
(2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)
(3)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。
4、讨论:
(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?
(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?
(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。
在同一个圆里,有无数条半径,且所有的半径都相等。
5、直径与半径的关系。
(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。
得出结论:在同一个圆里,
6、巩固练习:课本58“做一做”的第1-4题。
(二)画圆
1、介绍圆规的各部分名称及使用方法。
2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。
三、悟学
(一)巩固练习
1、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。
2、判断,并说为什么。
(1)半径的长短决定圆的大小。 ( )
(2)圆心决定圆的位置。 ( )
(3)直径是半径的2倍。 ( )
(4)圆的半径都相等。 ( )
3、思考题:在操场如何画半径是5米的大圆?
(二)课堂总结:经过今天的学习,你知道了什么?还有什么疑问?
(三)作业:书P60第1-4题。

(2)轴对称图形
教学目标:
1、在前面所学得成轴对称的平面图形的基础上,教学认识圆的对称轴。
2、学生认识到圆是轴对称图形,且对称轴有无数条。
3、培养学生动手操作能力,在操作中加深对所学平面图形的对称轴的认识。
教学重点:圆的对称轴。
教学难点:画对称轴的方法。
教学过程:
一、自学:
1、举例说出轴对称的物体。如:蝴蝶 、飞机、门窗、圆中的钟面、月饼等。想一想这些图形有什么特点?

2、观察、概括。
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。
二、议学:
1、你能分别画出下面两个圆的对称轴吗?你能画出几条?

2、学生尝试画出圆的对称轴,观察、再动手折一折,你发现了什么?
3、小结:圆有无数条对称轴。每一条直径所在的位置都是它的对称轴。
三、悟学:
1、在方格上画对称轴,并量出对称轴两边相对的点到对称轴的距离。

2、小结:对称轴两侧相对点到对称轴的距离相等。
3、从上面的图形可以看出,正方形、长方形、等腰三角形和圆都是轴对称图形,这些对称图形各有几条对称轴?画出。

4、下面的图形是轴对称图形吗?它们各有几条对称轴?
长方形 等边三角形 等腰三角形 正方形 圆 环形
四、总结:
今天我们学习了哪些知识?
五、布置作业:
练习十四第5—9题。
教学追记:
本堂课是对圆的初步认识,概念较多,也能会较乏味。为了避免学生学得枯燥、没兴趣,我采用了与动手操作相结合的方式进行教学,充分调动起学生的学习积极性,并让学生在动手操作的基础上,自主探索和发现圆的有关特性。但在教学“画圆”时,我的讲授部分似乎就多了一些,如能让学生自己讲述、演示画圆的步骤,有何不足在相互补充的话,这样的教学似乎会更好一些。

(3)圆的周长(一)
教学目标:
1、学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能
正确计算圆周长。
2、培养学生的观察、比较、概括和动手操作的能力。
3、对学生进行爱国主义教育。
教学重点:
圆的周长和圆周率的意义,圆周长公式的推导过程。
教学难点:
圆周长公式的推导过程。
教学过程:
一、自学:认识圆的周长
1、出示一个正方形。
这是什么图形?什么是正方形的周长?怎样计算?这个正方形周长与边长有什么关系? C=4a
2、什么是圆的周长?
让学生上前比划,圆的周长在那?那一部分是圆的周长?
得出定义:围成圆的曲线的长叫做圆的周长。
二、议学:
1、圆周长的公式推导
(1)你可以用什么办法知道一个圆的周长是多少?
(2)学生各抒己见,分别讨论说出自己的方法:
A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。
B、把圆放在直尺上滚动一周,直接量出圆的周长。
C、用一条小线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?
用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们探讨出一种求圆周长的普遍规律。
2、动手实践。
(1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。
(2)引生看表,问你们看周长与直径的比值有什么关系?
(3)你有办法验证圆的周长总是直径的3倍多一点吗?

(4)阅读课本P63,介绍圆周率,及介绍祖冲之。
3、解决新问题。新-课-标-第-一-网
(1)教学例1 圆形花坛的直径是20,它的周长是多少米?小自行车车轮的直径是50,绕花坛一周车轮大约转动多少周?
第一个问题: 已知 d = 20米 求:C = ?
根据 C =πd 20×3.14=62.8()
第二个问题: 已知: 小自行车d = 50c 先求小自行车C = ? c=πd 50c=0.5 0.5×3.14=1.57()
再求绕花坛一周车轮大约转动多少周?
62.8 ÷1.57=40(周)
答:它的周长是62.8米。绕花坛一周车轮大约转动40周。
三、巩固练习。
1、求下列各题的周长。书本65页练习十五的第1题
2、判断正误。
(1)圆的周长是直径的3.14倍。
(2)在同圆或等圆中,圆的周长是半径的6.28倍。
(3)C =2πr =πd
(4)半圆的周长是圆周长的一半。
四、作业。 P64 做一做 ,练习十五的第5、8题

(4)圆的周长(二)
教学目标:
1、通过教学使学生学会根据圆的周长求圆的直径、半径。
2、培养学生逻辑推理能力。
3、初步掌握变换和转化的方法。
教学重点:求圆的直径和半径。
教学难点:灵活运用公式求圆的直径和半径。
教学过程:
一、自学:
1、口答。 4π 2π 5π 10π 8π
2、求出下面各圆的周长。

二、议学:
1、提出研究的问题。
(1)你知道Π表示什么吗?
(2)下面公式的每个字母各表示什么?这两个公式又表示什么? C=πd C=2πr
(3)根据上两个公式,你能知道:
直径=周长÷圆周率 半径=周长÷(圆周率×2)
2、学习练习十四第2题。
(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)
已知:c=3.77 求:d=?
(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)
已知:c=1.2米 R=c÷(2Π) 求:r=?
三、巩固练习。
1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?
2、求下面半圆的周长,选择正确的算式。
⑴ 3.14×8
⑵ 3.14×8×2
⑶ 3.14×8÷2+8
3、一只挂钟分针长20c,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?
(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)
(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少? 20×2×3.14=125.6(厘米)
45分钟走了多少厘米? 125.6× =94.2(厘米)
4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

一、作业。P65-66 第3、6、7、9题

(5)圆的面积(一)
教学内容:圆的面积第67-68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。
教学目标:⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。
⒊渗透转化的数学思想。
教学重点:圆面积的含义。圆面积的推导过程。
教学难点:圆面积的推导过程。
教学过程:
一、自学:
1、已知r,周长的一半怎样求?
2、用手中的三角板拼三角形,长方形、正方形、平行四边等,并说出这些图形的面积计算公式。

s=ab s=a2 s= ah s= ah s= (a+b)h
二、议学:
1、什么是圆的面积?(出示纸片圆让生摸一摸)
圆所占平面大小叫做圆的面积。
2、推导圆的面积公式。
(1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?

若分的分数越多,这个图形越接近长方形。
(1)找:找出拼出的图形与圆的周长和半径有什么关系?

圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
长方形面积 = 长 ×宽
所以: 圆的面积 = 圆的周长的一半×圆的半径
S = πr × r
S圆 = πr×r = πr2
3、你还能用其他方法推算出圆的面积公式吗?
(1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的 。这个三角形底是圆周长的 ,三角形的高是圆的半径。
因为:三角形面积= ×底×高
圆面积= ×
= × •r×r
=πr2
(2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的 ,平行四边形的底是 ,三角形的高即一个半径,
因为:平行四边形面积=底×高
圆面积 = ×r÷
= ×r×8
=πr2
还可以取3份、4份等,同学们可以一一推算。
三、运用知识解决实际问题。
1、例1 一个圆的直径是20,它的面积是多少平方米?
已知:d=20厘米 求:s=?
2、根据下面所给的条件,求圆的面积。
r=5c d =0.8d
3、解答下列各题。
(1)一个圆形茶几桌面的直径是1,它的面积是多少平方厘米?
(2)公园草地上一个自动旋转喷灌装置的射程是10。它能喷灌的面积是多少?
四、作业。
课本P70第1、5题。

(6)圆的面积(二)
教学目标:
1、学生学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。
2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。
3、培养学生的逻辑思维能力。
教学重点:培养综合运用知识的能力。
教学难点:培养综合运用知识的能力。
教学过程:
一、自学:
1、口算:
32 42 52 82 92 202
2π 3π 6π 10π 7π 5π
2、思考:
(1)圆的周长和面积分别怎样计算?二者有何区别?
(2)求圆的面积需要知道什么条件?
(3)知道圆的周长能够求它的面积吗?
二、议学:
1、教学练习十六第3题
小刚量得一棵树干的周长是125.6c,这棵树干的横截面积是多少?
已知:c=125.6厘米 s=πr2
r:125.6÷(2×3.14) 3.14×202
=125.6÷6.28 =3.14×400
=20(厘米) =1256(平方厘米)
3、教学环形面积。
(1)例2 光盘的银色部分是个圆环,内圆半径是2c,外圆半径是6c。它的面积是多少?
已知:R=6厘米 r=2厘米 求: s=?
3.14×62 3.14×22
=3.14×36 =3.14×4
=113.04(平方厘米) =12.56(平方厘米)
113.04-12.56=100.48 (平方厘米)
第二种解法:3.14×(62-22)=100.48(平方厘米)
(2)小结:环形的面积计算公式:
S=πR2-πr2 或 S=π×(R2-r2)
(3)完成做一做: 一个圆形环岛的直径是50,中间是一个直径为10的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
三、悟学:
1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?
选择正确算式
A、(18.84÷3.14÷2)2×3.14
B、(18.84÷3.14)2×3.14
C、18.842×3.14
2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?
3、课堂小结。
(1)这节课的学习内容是什么?
(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?
已知半径求面积 S=πr2
已知直径求面积 S=π( )2
已知周长求面积 S=π( )2
(3)环形面积: S=π(R2-r2)
四、作业
课本P70第4、6、7题。

(7)圆的周长和面积的练习课
教学目标:
1、通过教学使学生理解并掌握圆的周长和面积计算方法。
2、培养学生分析问题和解决问题的能力,发展学生的空间观念。
3、灵活解答几何图形问题。
教学重点:认真审题,分辨求周长或求面积。
教学过程:
一、自学:
1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。


2、分辨面积与周长有什么不同?
(1)概念
圆的周长是指圆一周的长度
圆的面积是指圆所围成的平面部分的大小。
(2)计算公式
求圆的周长公式:C=πd 或 C=2πr
求圆的面积公式:S=πr2
(3)使用单位
计算圆的周长用长度单位
计算圆的面积用面积单位
二、练习。
1、判断下面各题是否正确,对的打“√”,错的打“”。
(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)²。
(2)半径为2厘米的圆的周长和面积相等。
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)

(4) 面积:3.14×62=3.14×12=37.68

2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。
⑴半圆的周长是多少厘米? (2)半圆的面积:

3、一个圆的周长是25.12米,它的面积是多少:
已知:C=25.12米 求:S=?
4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?
已知:R=7厘米=0.7分米 r=0.5分米 求:S=?
S环=π×(R2-r2)
3.14×(0.72-0.52)
=3.14×0.24
=0.7536(平方分米)
三、巩固发展.
1、思考题p71 (8)
一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)
(1)围成长方形: 31.4÷2=15.7()(长和宽的和)
长 × 宽 = 面积
当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.
(2)围成圆形
直径:31.4÷3.14=10()
半径:10÷2=5()
面积:3.14× 52=78.5(2 )
(3)比较:长方形面积:61.6 2 正方形面积:61.6225 2 圆面积:78.5 2
围成圆的面积最大。
2、思考题 p71 (9)、(10)
四、作业。
课本P71第6、7题。

(8)整理和复习
教学目标:
⒈根据圆周长与面积的计算公式掌握圆周长与面积的计算方法。
⒉培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。
⒊培养学生认真审题的良好学习习惯。
教学重点:灵活运用周长或面积公式解决实际问题。
教学过程:
一、周长与面积的区别。
1、什么是圆?圆周长的计算公式是什么?圆面积公式的计算公式是什么?
2、计算下题。求出它的周长与面积。
(1)学生动手计算。
(2)周长与面积有什么不同?
概念不同,计算公式不同,单位不同。
3、判断。两个图形相比较,哪个图形的周长长,哪个图形的面积就大。
(错。周长的长短和面积的大小没有必然的联系。)
二、运用所学知识解决实际问题。
1、一个圆形花坛,直径是4米,周长是多少米?
3.14×4=12.56(米)
2、一个圆形花坛,周长是12.56米,直径是多少米?
12.56÷3.14=4(米)
3、一个圆形花坛的半径是2米,它的面积是多少平方米?
3.14×22=12.56(平方米)
4、一个圆形花坛的周长是12.56米,它的面积是多少平方米?
r=12.56÷(2×3.14)= 2(米) 3.14×22=12.56(平方米)
5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?
⑴ 3.14×( )2=28.26(平方米)
3.14×( )2=12.56(平方米)
28.26-12.56=15.7 (平方米)
⑵ - = 5(平方米)
3.14×5=15.7(平方米)
6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)


7、一个圆形餐桌面直径是2,它的周长多少米?它的面积是多少米?如果一个人需要0.5宽的位置就餐,这张餐桌大约能坐多少人?+
三、综合练习。
1、判断对错,
(1)圆的半径都相等。 ( )
(2)在同圆或等圆中圆周长约是半径的6.28倍。 ( )
(3)半圆的周长是圆周长的一半。( )
2、只列式不计算。
(1)一个圆形铁板的半径是5分米,它的面积是多少平方分米?
(2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?
(3)一个圆形铁板的周长是28.26分米,它的面积是多少平方分米?
3、说一说下面各题的解题思路。
(1)一个圆形花坛,直径是5米,小明围着它跑了5圈,小明一共跑了多少米?
(2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是
多少平方米?
二、布置作业
练习十七1—3,思考第4题。

(9)确定起跑线
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:如何确定每一条跑道的起跑点。
教学难点:确定每一条跑道的起跑点。
教学过程:
一、提出研究问题。(出示运动场运动员图片)
1、小组讨论:田径场400跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该向差多少米?
二、收集数据
1、看课本75页了解400跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96,第一条半圆形跑道的直径为72.6,每一条跑道宽1.25。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)
三、分析数据
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论
1、看书P76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)
五、课外延伸
200跑道如何确定起跑线?





本文来自:逍遥右脑记忆 /xiaoxue/49523.html

相关阅读:列方程解决实际问题(1)
六年级数学上册分数乘法练习课导学案
六年级数学下册第1周导学案
倒数的认识
分数除以整数