欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

探究高中数学的“美”

编辑: 路逍遥 关键词: 高中数学 来源: 记忆方法网

综观当前的教育形势,举国上下正在全力推进素质教育,培养德智体美劳全面发展,具有创新意识和实践能力的人才已成为教育者关注的焦点。德育已得到高度的重视,教育界高举“德育领先”旗帜;智育在传统教学中有着深厚的根基,重视程度不言而喻;体育本着全民健身的宗旨,活动有声有势;劳动教育或许与生活实践比较密切,也相应受到越来载多的人的关注;然而,美育?……美育没有受到相应的重视!此外,我们在谈论人文精神的时候,常常把人文精神定位在追求“真、善、美”和人的全面自由的发展之最高层面上,在讨论艺术美的理论中,也常常谈到“真、善、美”三位一体的问题。怀特海曾经指出,数学是真、善、美的辩证统一。一个正确的数学理论,反映客观事物的本质和规律,这就是真;数学理论不管离现实多远,最后总能找到它的实际用途,体现其为人类服务的价值取向,这是数学的善;数学理论本身的奇特、微妙、简洁有力以及建立这些理论时人的创造性思维这就是数学的美。

而这些观点在数学过程中是否得到充分的体现吗?没有!苏霍姆林斯基曾说:“没有审美教育就没有任何教育”。在此,不想夸大美育的作用,但是,作用素质教育的重要组成部分,未能得到充分重视,确是深感遗憾。值得高兴的是,高中数学课程标准(讨论稿)已提出了数学教育必须注意培养学生的科学精神和人文精神,特别是“数学与文化”这一单元体现了数学文化的一个重要功能是在美学方面,这种功能是鼓舞人们对数学的追求化为一种对完善的追求。基于此,提出本课题的研究,或许对中学数学教学中加强美育提供有益的启示。

一、数学美的表现

美,作为现实事物和现象,物质产品和精神产品,艺术作品等属性总和,具有匀称性、比例性、和谐,色彩变幻。鲜明性和新颖性,作为精神产品的数学就具有上述美的特征。我们知道,数学的世界,是一个充满了美的世界:数的美、式的美、形的美……在那里,我们可以感受到和谐、比例、整体和对称,我们可以感受到布局的合理,结构的严谨、关系的和谐以及形式的简洁。

数学美的表现形式是多种多样的,从数学内容看,有概念之美、公式之美、体系之美等;从数学的方法及思维看,有简约之美、类比之美、抽象之美、无限之美等;从狭义美学意义上看,有对称之美、和谐之美、奇异之美等。

经通过对数学美表现的研究,我们可以肯定的回答,数学中含有美的因素,数学发展受美育思想的影响,在此,可以借助古代哲学家、数学家普洛克拉斯断言:“哪里有数,哪里就有美。”

二、数学美的功能

审美教育的范围正日益广泛地渗透到人类社会的各个领域之中。人们不仅通过音乐,艺术,而且通过自然美、社会美、科学美,得到美的熏陶,美化精神的境界。美育,对使学生树立正确的审美观,提高学生的审美能力和审美创造能力,塑造学生完善的人格,促进学生的全面发展,有着非常重要和积极的作用。

数学美的功能,主要体现在下面几个方面:(1)数学美能够培养人们创造、发明数学的激情。(2)数学美能启发人们探求真理的思路。(3)数学美感有检验真理的作用。(4)寓美于教,能激发学生的学习兴趣。(5)数学美感能达到以美启智,提高学生解决问题的能力。

三、数学美之教育途径

在科学美层次上,提高学生的科学素养。科学和艺术一样,都有自己的美学特征,起着陶冶情操,完善思维品质的作用。其中包括:科学发现中的美学感悟,探索科学规律获得的愉悦,科学思维方法的美妙等诸多方面。科学美的发掘,可以通过种种渠道进行,包括视觉上的美,情理之中意料之外的“惊讶美”,证明技巧运用中的“机智美”,解决生活实际问题时的“实用美”,撰写小论文时的感受到的“创造美”。在中学数学教学过程中,我们可以从中学数学教材内容的美,如概念之美、证明之美、体系之美、无限之美、平衡之美等方面加以探讨,带领学生进入数学美的乐园,陶冶精神情操,激发他们的学兴趣,提高学生的审美能力,培养创造性思维能力。

四、数学的对称美

对称美的形式很多,对称的这种美也不只是数学家独自欣赏的,人们对于对称美的追求是自然的、朴素的。毕达哥拉斯学派认为,一切空间图形中,最美的是球形;一切平面图形中,最美的是圆形。圆是中心对称圆形圆心是它的对称中心,圆也是轴对称图形任何一条直径都是它的对称轴。还有正弦曲线、余弦曲线等;以及坐标系的对称,正数、零、负数;指数函数与对数函数、等式与不等式、综合法与分析法等内容无不体现着对称美。

提高学生的审美能力,教师应当作为必要的审美示范,引导学生感知,欣赏数学美。另一方面,“从实践中来,到实践中去”,只有将美知识应用于实践,审能教育才有意义,学生的审美能力才能得到进一步提高,因此,数学美之教育途径主要有二:一是展示美,二是应用美。其具体探究途径如下:展示隐含的美;挖掘数学美;创造数学美;将美学原理应用于解题实践。

山西省河津中学 马岩辉


本文来自:逍遥右脑记忆 /gaozhong/1294880.html

相关阅读:高考数学复习:系统梳理 重点掌握
高中数学:扇形的面积公式_高中数学公式
高中数学学习方法:高二数学复习八大原则
三角函数图象性质
科学把握数学新课标