欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

数学的一般解题方法

编辑: 路逍遥 关键词: 高中数学 来源: 记忆方法网

  函数的观点和思想方法贯穿整个高中数学的全过程,在近几年的高考中,函数类试题在试题中所占分值一般为22---35分.一般为2个选择题或2个填空题,1个解答题,而且常考常新。

  在选择题和填空题中通常考查反函数、函数的定义域、值域、函数的单调性、奇偶性、周期性、函数的图象、导数的概念、导数的应用以及从函数的性质研究抽象函数。

  在解答题中通常考查函数与导数、不等式的综合运用。其主要表现在:

  1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。

  2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。

  3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。

  4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。

  5.涌现了一些函数新题型。

  6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。

  7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。

  8.求极值,函数单调性,应用题,与三角函数或向量结合。

  分析近五年的全国高考试题,有关三角函数的内容平均每年有25分,约占17%,试题的内容主要有两方面;其一是考查三角函数的性质和图象变换;尤其是三角函数的最大值、最小值和周期,题型多为选择题和填空题;其二是考查三角函数式的恒等变形,如利用有关公式求植,解决简单的综合问题,除了在填空题和选择题中出现外,解答题的中档题也经常出现这方面的内容,是高考命题的一个常考的基础性的题型。其命题热点是章节内部的三角函数求值问题,命题新趋势是跨章节的学科综合问题。

  因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。基于以上分析,预测在2013年的高考试卷中,考查三角函数的题仍为一小题一大题。主要考查“三基”(基础知识、基本技能、基本思想和方法)以及综合能力,难度多为容易题和中档题。

  1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右,占总分值的20%左右。

  (2)整体平衡,重点突出:对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:

  ①求曲线方程(类型确定、类型未定);

  ②直线与圆锥曲线的交点问题(含切线问题);

  ③与曲线有关的最(极)值问题;

  ④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);

  ⑤探求曲线方程中几何量及参数间的数量特征;

  (3)能力立意,渗透数学思想:一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。

  (4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。

  来源:搏众教育


本文来自:逍遥右脑记忆 /gaozhong/615659.html

相关阅读:高中数学:扇形的面积公式_高中数学公式
科学把握数学新课标
高中数学学习方法:高二数学复习八大原则
高考数学复习:系统梳理 重点掌握
三角函数图象性质