三角函数应该是高中数学中比较难的一个部分了,小编整理了一些关于高中三角函数的相关消息,供大家参考,希望对大家有所帮助。
三角函数积分公式大全(一)无论α是多大的角,都将α看成锐角.
以诱导公式为例:
若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二.
三角函数积分公式大全(二)以诱导公式为例:
若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四.
诱导公式的应用:
运用诱导公式转化三角函数的一般步骤:
特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。
三角函数积分公式大全(三)三角形中的三角函数
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
sin3a
=3sina-4sin^3a
=4sina(3/4-sin^2a)
=4sina[(√3/2)-sina][(√3/2)+sina]
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[60°+a)/2]
=4sinasin(60°+a)sin(60°-a)
三角函数积分公式大全(三)cos3a
=4cos^3a-3cosa
=4cosa(cos^2a-3/4)
=4cosa[cos^2a-(√3/2)^2]
=4cosa(cosa-cos30°)(cosa+cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
本文来自:逍遥右脑记忆 /gaozhong/1294871.html
相关阅读:高中数学:扇形的面积公式_高中数学公式
高考数学复习:系统梳理 重点掌握
高中数学学习方法:高二数学复习八大原则
科学把握数学新课标
三角函数图象性质