【—多项式的根】多项式的根经常出现在函数的计算之中,同学们都快过来加强巩固一下吧 初中语文。
多项式的根
给出多项式 f∈R[x1,...,xn] 以及一个 R-代数 A。对 (a1...an)∈An,我们把 f 中的 xj 都换成 aj,得出一个 A 中的元素,记作 f(a1...an)。如此, f 可看作一个由 An 到 A 的函数。
若然 f(a1...an)=0,则 (a1...an) 称作 f 的根或零点。
例如 f=x^2+1。若然考虑 x 是实数、复数、或矩阵,则 f 会无根、有两个根、及有无限个根!
例如 f=x-y。若然考虑 x 是实数或复数,则 f 的零点集是所有 (x,x) 的集合,是一个代数曲线。事实上所有代数曲线由此而来。
另外,若所有系数为实数多项式 P(x)有复数根Z,则Z的共轨复数也是根。
若P(x)有n个重叠的根,则 P‘(x) 有n-1个重叠根。即若 P(x)=(x-a)^nQ(x),则有 a 是 P’(x)的重叠根且有n-1个。
关于多项式的根问题,并不是涉及到的范围,有兴趣同学可以掌握一下。
本文来自:逍遥右脑记忆 /chuzhong/69360.html
相关阅读:初中数学正方形的几何知识点
学习初中数学的方法之高质量练习
平行四边形?初中数学题精选
初中数学角的公式大全
浅谈初中数学作业设计有效性的实践与研究