欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

初中数学助记口诀(趣味性查验知识点)

编辑: 路逍遥 关键词: 初中数学 来源: 记忆方法网
一、数与代数Ⅰ、数与式1.有理数的加法、乘法运算同号相加一边倒,异号相加“大”减“小”;符号跟着大的跑,绝对值相等“零”正好。同号得正异号负,一项为零积是零。【注】“大”减“小”是指绝对值的大小。2.合并同类项合并同类项,法则不能忘;只求系数代数和,字母、指数不变样。  3.去、添括号法则去括号、添括号,关键看符号;括号前面是正号,去、添括号不变号;括号前面是负号,去、添括号都变号。4.单项式运算加、减、乘、除、乘(开)方,三级运算分得清;系数进行同级(运)算,指数运算降级(进)行。5.分式混合运算法则分式四则运算,顺序乘除加减;乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先;分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。6.平方差公式两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。7.完全平方公式首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。8.因式分解一提二套三分组,十字相乘也上数;四种方法都不行,拆项添项去重组;重组无望试求根,换元或者算余数;多种方法灵活选,连乘结果是基础;同式相乘若出现,乘方表示要记住。【注】一提(提公因式)二套(套公式)9.二次三项式的因式分解先想完全平方式,十字相乘是其次;两种方法行不通,求根分解去尝试。10.比和比例两数相除也叫比,两比相等叫比例;基本性质第一条,外项积等内项积;前后项和比后项,组成比例叫合比;前后项差比后项,组成比例是分比;两项和比两项差,比值相等合分比;前项和比后项和,比值不变叫等比;商定变量成正比,积定变量成反比;判断四数成比例,两端积等中间积。11.根式和无理式表示方根代数式,都可称其为根式;根式异于无理式,被开方式无限制;无理式都是根式,区分它们有标志;被开方式有字母,才能称为无理式。12.最简根式的条件最简根式三条件:号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。Ⅱ、方程与不等式1.解一元一次方程已知未知闹分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。先去分母再括号,移项合并同类项;系数化1还没好,回代值等才算了。2.解一元一次不等式去分母、去括号,移项时候要变号;同类项、合并好,再把系数来除掉;两边除(以)负数时,不等号改向别忘了。3.解一元一次绝对值不等式大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。4.解一元一次不等式组大大取较大,小小取较小;大小、小大取中间,大大,小小无处找。5.解分式方程同乘最简公分母,化成整式写清楚;求得解后须验根,原(根)留、增(根)舍别含糊。6.解一元二次方程方程没有一次项,直接开方最理想;如果缺少常数项,因式分解没商量;b、c相等都为零,等根是零不要忘;b、c同时不为零,因式分解或配方;也可直接套公式,因题而异择良方。7.解一元二次不等式首先化成一般式,构造函数第二站;判别式值若非负,曲线横轴有交点;a正开口它向上,大于零则取两边;代数式若小于零,解集交点数之间;方程若无实数根,口上大零解为全;小于零将没有解,开口向下正相反。Ⅲ、函数1.坐标系上坐标点坐标平面点(x,y),横在前来纵在后;X轴上y为0,x为0在Y轴。  象限角的平分线,坐标特征有特点;一、三横纵都相等,二、四横纵恰相反。 平行某轴的直线,点的坐标有讲究;平行于X轴,纵等横不同;平行于Y轴,横等纵不同。 对称点坐标要记牢,相反位置莫混淆;X轴对称y相反,Y轴对称X反;原点对称最好记,横纵坐标变符号。  2.函数自变量的取值分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。 3.判断正比例函数:判断正比例函数,检验当分两步走;一量表示另一量,是与否;若有还要看取值,全体实数都要有。4.正比例函数()图像与性质正比函数很简单,经过原点一直线;K正一三负二四,变化趋势记心间;K正左低右边高,同大同小向爬山;K负左高右边低,一大另小下山峦。5.反比例函数()图像与性质反比函数双曲线,所有都不过原点;K正一三负二四,两轴是它渐近线;K正左高右边低,一三象限滑下山;K负左低右边高,二四象限如爬山。6.一次函数()图像与性质一次函数是直线,图像经过仨象限;两个系数k与b,作用之大莫小看;k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k是斜率定夹角,b与Y轴来相见;k的绝对值越大,线离横轴就越远。7.一次函数()图像与性质二次方程零换y,二次函数便出现;全体实数定义域,图像叫做抛物线;抛物线有对称轴,两边单调正相反;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见;b的符号较特别,符号与a相关联;顶点非高即最低。上低下高很显眼,如果要画抛物线,平移也可去描点;提取配方定顶点,两条途径再挑选,若要平移也不难,先画基础抛物线,列表描点后连线,平移规律记心间,左加右减括号内,号外上加下要减。8.三角函数三角函数的增减性:正增余减。特殊三角函数值(30度、45度、60度)记忆:正弦(值)、余弦(值)分母2、正切(值)、余切(值)分母3。二、空间与图形Ⅰ、线与角1.直线、射线与线段直线射线与线段,形状相似有关联;直线长短不确定,可向两方无限延;射线仅有一端点,反向延长成直线;线段定长两端点,双向延伸变直线。两点定线是共性,组成图形最常见。2.角一点出发两射线,组成图形叫做角;共线反向是平角,平角之半叫直角;平角两倍成周角,小于直角叫锐角;直平之间是钝角,平周之间叫优角;和为直角叫互余,和为平角叫互补。3.两点间距离公式同轴两点求距离,大减小数就为之;与轴等距两个点,间距求法亦如此;平面任意两个点,横纵标差先求值;差方相加开平方,距离公式要牢记。Ⅱ、平面图形1.平行四边形的判定要证平行四边形,两个条件才能行;一证对边都相等,或证对边都平行;一组对边也可以,必须相等且平行;对角线,是个宝,互相平分“跑不了”;对角相等也有用,“两组对角”才能成。 2.矩形的判定任意一个四边形,三个直角成矩形;对角线等互平分,四边形它是矩形。已知平行四边形,一个直角叫矩形;两对角线若相等,理所当然为矩形。3.菱形的判定任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形;已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形。4.梯形的辅助线移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。 5.三角形的辅助线题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连;三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。6.圆内的正多边形份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.7.圆中比例线段遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替;遇等比,改等积,引用射影和圆幂;平行线,转比例,两端各自找联系。 8.圆的证明圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边;它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联;圆周、圆心、弦切角,细找关系把线连;同弧圆周角相等,证题用它最多见;圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间;外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端;直线与圆有共点,证垂直来半径连;直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键;两圆相切作公切,两圆相交连公弦; 经过分点做切线,切线相交n个点;n个交点做顶点,外切正n边形便出现;正n边形很美观,它有内接,外切圆;内接、外切都唯一,两圆还是同心圆;它的图形轴对称,n条对称轴都过圆心点;如果n值为偶数,中心对称很方便;正n边形做计算,边心距、半径是关键;内切、外接圆半径,边心距、半径分别换;分成直角三角形2n个整,依此计算便简单.9.几何图形中的辅助线人说几何很困难,难点就在辅助线;辅助线,如何添?把握定理和概念;还要刻苦加钻研,找出规律凭经验;图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;线段垂直平分线,常向两端把线连;要证线段倍与半,延长缩短可试验;三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;平行四边形出现,对称中心等分点;梯形里面作高线,平移一腰试试看;平行移动对角线,补成三角形常见;证相似,比线段,添线平行成习惯;等积式子比例换,寻找线段很关键;直接证明有困难,等量代换少麻烦;斜边上面作高线,比例中项一大片。半径与弦长计算,弦心距来中间站;圆上若有一切线,切点圆心半径连;切线长度的计算,勾股定理最方便;要想证明是切线,半径垂线仔细辨;是直径,成半圆,想成直角径连弦;弧有中点圆心连,垂径定理要记全;圆周角边两条弦,直径和弦端点连;弦切角边切线弦,同弧对角等找完;要想作个外接圆,各边作出中垂线;还要作个内接圆,内角平分线梦圆;如果遇到相交圆,不要忘作公共弦;内外相切的两圆,经过切点公切线;若是添上连心线,切点肯定在上面;要作等角添个圆,证明题目少困难;辅助线,是虚线,画图注意勿改变;假如图形较分散,对称旋转去实验;基本作图很关键,平时掌握要熟练;解题还要多心眼,经常总结方法显;切勿盲目乱添线,方法灵活应多变;分析综合方法选,困难再多也会减;虚心勤学加苦练,成绩上升成直线;几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办;四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。
本文来自:逍遥右脑记忆 /chuzhong/582306.html

相关阅读:初中数学正方形的几何知识点
平行四边形?初中数学题精选
浅谈初中数学作业设计有效性的实践与研究
学习初中数学的方法之高质量练习
初中数学角的公式大全