【—不等式的证明】不等式的证明知识:它包括了比较法、综合法、分析法、放缩法、数学归纳法、反证法等。
不等式的证明
1、比较法
包括比差和比商两种方法。
2、综合法
证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,综合法又叫顺推证法或因导果法。
3、分析法
证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。
4、放缩法
证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。
5、数学归纳法
在证明第二步时,一般多用到比较法、放缩法和分析法。
6、反证法
证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
知识拓展:用数学归纳法证明不等式,要注意两步一结论。
本文来自:逍遥右脑记忆 /chuzhong/220405.html
相关阅读:学习初中数学的方法之高质量练习
平行四边形?初中数学题精选
初中数学正方形的几何知识点
初中数学角的公式大全
浅谈初中数学作业设计有效性的实践与研究