数学思想方法是指导解题的十分重要的方针,有利于培养学生思维的广阔性、深刻性、灵活性和组织性。
误区:思想有点高不可攀
一谈到数学思想方法,有些学生会认为深不可测、高不可攀。其实每一道数学题之中都包含着数学思想方法,例如把分式方程化为整式方程就应用了转化思想,列方程解应用题体现了方程思想,平面直角坐标系中图象与解析式反映了数形结合思想,图形的翻折与旋转则表现了运动变换思想等等。数学思想方法是指导解题的十分重要的方针,有利于培养学生思维的广阔性、深刻性、灵活性和组织性。在初三数学的学习过程中,自己不妨把图形动一动、变一变,把条件和结论作一些其它方面的联想,数学化地思考问题。中考题的压轴题往往是在串联几个知识点的同时考查学生猜想与探究、函数与运动、变换与分类等能力,这在能力层面上提出了较高的要求。
对策一:数学思想方法并不神秘,它蕴藏在题目之中。
对策二:了解一些数学思想,找到几道典型题。
对策三:解题完毕问自己“我运用了什么数学思想方法”?
对策四:解题前问自己从什么角度去思考?(方程角度、运动角度、函数角度、分类讨论角度)
本文来自:逍遥右脑记忆 /chuzhong/1246504.html
相关阅读:平行四边形?初中数学题精选
初中数学角的公式大全
浅谈初中数学作业设计有效性的实践与研究
初中数学正方形的几何知识点
学习初中数学的方法之高质量练习