【—正弦函数的公式图像性质】通过观察正弦函数的图像,我们可以看出,正弦函数它既是轴对称图形,又是中心对称图形。
定义域
实数集R
值域
[-1,1] (正弦函数有界性的体现)
最值和零点
①最大值:当x=2kπ+(π/2) ,k∈Z时,y(max)=1
②最小值:当x=2kπ+(3π/2),k∈Z时,y(min)=-1
零值点:(kπ,0) ,k∈Z
1)对称轴:关于直线x=(π/2)+kπ,k∈Z对称
2)中心对称:关于点(kπ,0),k∈Z对称
周期性
最小正周期:y=Asin(ωx+φ) T=2π/ω
奇偶性
奇函数 (其图象关于原点对称)
单调性
在[-π/2+2kπ,π/2+2kπ],k∈Z上是单调递增.
在[π/2+2kπ,3π/2+2kπ],k∈Z上是单调递减.
正弦函数的性质包括了基础的图像性质和函数性质。
本文来自:逍遥右脑记忆 /chuzhong/121644.html
相关阅读:学习初中数学的方法之高质量练习
初中数学角的公式大全
初中数学正方形的几何知识点
浅谈初中数学作业设计有效性的实践与研究
平行四边形?初中数学题精选