因式分解是代数中的重要内容,在学习中如何进行小结与复习?按照“一提、二公式、三分组、四检查”的步骤,效果良好。
1. “一提”:先看多项式的各项是否有公因式,若有公因式,先提取公因式。
2. “二公式”:若多项式的各项无公因式(或已提取公因式),第二步则看项数运用公式。如果是两项就考虑用平方差公式,如果是三项就先考虑用完全平方公式,再考虑用型式子进行因式分解,最后考虑用十字相乘法。
3. “三分组”:若以上两步都不能对多项式进行因式分解,则应考虑分组分解。分组的原则是:一般先考虑分组后能运用公式(在既可用完全平方公式,又可用平方差公式时,常把能用完全平方公式的项分为一组),再考虑分组后能提取公因式。但必须确保组与组之间能继续提取公因式或运用公式,从而达到将整个多项式分解的目的。
4. “四检查”:检查多项式的每一个因式是否还能继续分解因式,直到每一个多项式因式都不能再分解为止。用整式的乘法检查因式分解的结果是否正确。
相关阅读:我初中阶段的学习方法的总结
本文来自:逍遥右脑记忆 /chuzhong/11990.html
相关阅读:浅谈初中数学作业设计有效性的实践与研究
初中数学角的公式大全
初中数学正方形的几何知识点
平行四边形?初中数学题精选
学习初中数学的方法之高质量练习