【—上海三角形的重心知识】我们都知道重心是三角形内到三边距离之积最大的点。下面就让我们一起来看看三角形的重心的知识吧。
三角形的重心
重心是三角形三边中线的交点,三线交一点可用燕尾定理证明。
已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。
证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:
1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3
温馨提示:上面的内容是上海初中数学三角形的重心的知识要点,聪明的大家已经可以灵活运用了吧。
本文来自:逍遥右脑记忆 /chuzhong/107465.html
相关阅读:学习初中数学的方法之高质量练习
初中数学正方形的几何知识点
浅谈初中数学作业设计有效性的实践与研究
平行四边形?初中数学题精选
初中数学角的公式大全