欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

高考数学题型总结之导数题型分析及解题方法

编辑: 路逍遥 关键词: 高中数学 来源: 记忆方法网

高考数学题型总结之导数题型分析及解题方法

一、考试内容

导数的概念,导数的几何意义,几种常见函数的导数;

两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

二、热点题型分析

题型一:利用导数研究函数的极值、最值。

1. 在区间上的最大值是 2

2.已知函数处有极大值,则常数c= 6 ;

3.函数有极小值 -1 ,极大值 3

题型二:利用导数几何意义求切线方程

1.曲线在点处的切线方程是

2.若曲线在P点处的切线平行于直线,则P点的坐标为 (1,0)

3.若曲线的一条切线与直线垂直,则的方程为

4.求下列直线的方程:

(1)曲线在P(-1,1)处的切线; (2)曲线过点P(3,5)的切线;

解:(1)

所以切线方程为

(2)显然点P(3,5)不在曲线上,所以可设切点为,则①又函数的导数为,

所以过点的切线的斜率为,又切线过、P(3,5)点,所以有②,由①②联立方程组得,,即切点为(1,1)时,切线斜率为;当切点为(5,25)时,切线斜率为;所以所求的切线有两条,方程分别为

题型三:利用导数研究函数的单调性,极值、最值

1.已知函数的切线方程为y=3x+1

(Ⅰ)若函数处有极值,求的表达式;

(Ⅱ)在(Ⅰ)的条件下,求函数在[-3,1]上的最大值;

(Ⅲ)若函数在区间[-2,1]上单调递增,求实数b的取值范围

解:(1)由

过的切线方程为:

而过

∵ ③

由①②③得 a=2,b=-4,c=5

(2)

又在[-3,1]上最大值是13。

(3)y=f(x)在[-2,1]上单调递增,又由①知2a+b=0。

依题意在[-2,1]上恒有0,即

①当;

②当;

③当

综上所述,参数b的取值范围是

2.已知三次函数在和时取极值,且.

(1) 求函数的表达式;

(2) 求函数的单调区间和极值;

(3) 若函数在区间上的值域为,试求、应满足的条件.

解:(1) ,

由题意得,是的两个根,解得,.


本文来自:逍遥右脑记忆 /gaozhong/932618.html

相关阅读:高中数学学习方法:高二数学复习八大原则
高中数学:扇形的面积公式_高中数学公式
科学把握数学新课标
高考数学复习:系统梳理 重点掌握
三角函数图象性质