数列的极限定义(描述性的):
如果当项数n无限增大时,无穷数列的项an无限地趋近于某个常数a(即无限地接近于0),a叫数列的极限,记作,也可记做当n→+∞时,an→a。
数列的极限严格定义:
即ε-N定义:对于任何正数ε(不论它多么小),总存在某正数N,使得当n>N时,一切an都满足,a叫数列的极限。
数列极限的四则运算法则:
若,则
(1),;
(2),;
(3)。
前提条件:(1)各数列均有极限,(2)相加减时必须是有限个数列才能用法则。
an无限接近于a的方式有三种:
第一种是递增的数列,an无限接近于a,即an是在常数a的左边无限地趋近于a,如n→+∞时,;
第二种是递减数列,an无限地趋近于a,即an是在常数a的右边无限地趋近于a,如n→+∞时,是;
第三种是摆动数列,an无限地趋近于a,即an是在无限摆动的过程中无限地趋近于a,如n→+∞时,。
一些常用数列的极限:
(1)常数列A,A,A,…的极限是A;
(2)当时,;
(3)当|q|<1时,;当q>1时,不存在;
(4)不存在,。
(5)无穷等比数列{an}中,首项a1,公比q,前n项和Sn,各项之和S,则(只有在0<|q|<1时)。
本文来自:逍遥右脑记忆 /gaozhong/854115.html
相关阅读:高中数学学习方法:高二数学复习八大原则
高考数学复习:系统梳理 重点掌握
科学把握数学新课标
三角函数图象性质
高中数学:扇形的面积公式_高中数学公式