共线向量的定义:
如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作。
注:当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线。
共线向量的坐标表示:
若,,则。
共线向量定理:
空间任意两个向量、(≠),∥,存在实数λ,使=λ。
推论:
如果l为经过已知点A且平行于已知非零向量的直线。那么对任一点O,点P在直线l上的充要条件是存在实数t,满足等式
其中向量叫做直线l的方向向量。
如图:
式都叫做空间直线的向量参数表示式,式是线段AB的中点公式。
相关高中数学知识点:共面向量
共面向量定义:
通常我们把平行于同一平面的向量,叫做共面向量
说明:空间任意的两向量都是共面的。
共面向量定理:
如果两个向量不共线,与向量共面的条件是存在实数x,y,使。
推论1:
如图,空间中的一点P位于平面MAB内的充要条件是存在有序实数对(x,y)使
或对空间任一定点O,有
在平面MAB内,点P对应的实数对(x,y)是唯一的, 式叫做平面MAB的向量表示式。
推论2:
空间中的一点P与不共线的三个点A,B,C共面的充要条件是存在唯一的有序实数组(x,y,z)使 (其中O为空间任一点)。
共面向量定理的延伸:
如果三个不共面的向量满足等式
本文来自:逍遥右脑记忆 /gaozhong/845718.html
相关阅读:科学把握数学新课标
三角函数图象性质
高考数学复习:系统梳理 重点掌握
高中数学:扇形的面积公式_高中数学公式
高中数学学习方法:高二数学复习八大原则