欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

精心导入使数学课堂更精彩

编辑: 路逍遥 关键词: 高中数学 来源: 记忆方法网

  作为数学教师,都希望提高自己的教学效率。只是每个人的认识和做法不尽相同,最终效果也就不完全一样。良好的开端是成功的一半,一节好课的导入就好比“凤头”,教师授课导入得好,不仅能吸引住学生,唤起学生的求知欲望,而且能燃起学生智慧的火花,使学生积极思维,勇于探索,主动地去学习,从而巩固原有知识,传授新的知识。使教学达到预期的效果。因此,在课堂教学中,一定重视教学伊始的导入艺术。本文就初中数学导入教学分四方面提出一些粗浅的看法:

  一、开门见山导入

  开门见山的直接导入是最基本最常见的一种导入方式,上课一开始,教师就直接揭示课题,将有关内容直接呈现给学生,用三言两语直接阐明对学生的目的要求,简洁明快地讲述或设问,引起学生的有意注意,使学生心中有数,诱发探求新知识的兴趣,把学生分散的注意力引导到课堂教学中来。要求教师语言精炼、简短、生动、明确、富有鼓动性使学生产生一种需要感、紧迫感,激发学生的学习动机。

  例如“整式的加减”的导入:我们已经学习了整式的相关概念、合并同类项法则,去括号和添括号法则,本节课,我们将运用概念及法则来学习整式的加减运算。

  例如:在教学《轴对称图形》这一节内容时,我是这样引入的:同学们,我姓什么?姓“王”,你们谁能又快又好在剪出这个“王”字?这个“王”字有什么特征?先让学生动手剪一剪,试一试,想一想,谈一谈。然后再出示:“北京古宫图”、“飞机”、“中国结”、“脸谱”等图形,让他们找找这些图形有何共同特点?从而引入课题——轴对称图形。

  开门见山导入法具有简洁明快的特点,能在很短的时间内就引起学生有意注意,帮助学生把握学习方向。凡属学生所熟知的事物或一点就可以大致了解的教学内容,可采用开门见山法。

  二、以动手实验导入

  根据初中生的年龄特点,通过动手操作使学生眼、手、口、脑协同活动,是激发学生学习动机的方法。

  在讲“等腰三角形的性质”时,课前布置学生制作一个简易测平仪(仿照书上的“想一想”),上课时可先问学生,请用你的测平仪测量一下你的书桌面是否水平?怎样测呢?为什么可测是否水平?学了本节知识后便可获解。

  在讲“二次函数的性质应用一图形面积的最值求法”时,给每位同学发一根60cm长的铁丝,请学生弯成一个长方形,问谁能弯成一个长方形的面积最大?通过竞赛自己悟出道理,尝试着成功,将使学生增强学习的信心,提高学习的内部动机,也会使学生兴趣向高级的方向转化。

  三、创设悬念导入

  所谓悬念,通常是指对那些悬而未决的问题和现象的关切心情。悬念导入法制造悬念的目的主要有两点:一是激发兴趣,二是启动思维。

  悬念一般是出乎人们预料,或展示矛盾,或让人迷惑不解,常能造成学生心理上的焦虑、渴望和兴奋,只想打破砂锅问到底,尽快知道究竟,而这种心态正是教学所需要的“愤”和“悱”的状态。一般来讲,数学中的悬念需要教师在深入钻研教材与分析学生知识储备的基础上进行精心设计、精心准备。

  例如:“等比数列前N项和”知识的教学,可利用学生已有的对珠穆朗玛峰高度的认识,引导学生从“折纸”这种常见的活动出发,让学生体会一张薄薄的纸片只需对折不多的次数,其厚度就会大幅增长,那么教师指出“有一种纸板的厚度是1mm,只需将其对折23次其厚度就可超过珠穆朗玛峰高度”的论断,使学生心理形成强烈的反差,形成悬念,激起学生强烈的求知欲望。讲“圆周角”一节时,可首先准备好一张事先画好一个圆(但无圆心)的方纸提问:谁能不用任何工具准确找出圆心,但都需要尺规,感到无法可解,这时,老师点出:学了本节知识后就可解决这个问题。

  再如讲“等腰三角形的判定”这节时,先复习一下等腰三角形的性质,然后可提出这样一个问题:如图,ABC是等腰三角形,AB=AC,倘若一不留心,它的一部分被墨水涂没了,只留下一条底边BC和一个底角四、循序渐进导入有时在学生形成概念的过程中,使学生感到了引新概念的必要性,循序渐进地建立新概念,使之成为学生的自然需求,他们的积极性和主动性便更强了。

首页上一页12下一页末页共2页
本文来自:逍遥右脑记忆 /gaozhong/699379.html

相关阅读:高考数学复习:系统梳理 重点掌握
高中数学学习方法:高二数学复习八大原则
三角函数图象性质
高中数学:扇形的面积公式_高中数学公式
科学把握数学新课标