异面直线:
不同在任何一个平面内的两条直线。
空间中直线与直线的位置关系有且只有三种 :
异面直线的判定:
过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线。
用符号语言可表示为:
异面直线的画法:
公理4:
平行于同一条直线的两条直线互相平行。
等角定理:
空间中,如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
异面直线的性质:
既不平行,又不相交;
证明线线平行的常用方法:
①利用定义,证两线共面且无公共点;
②利用公理4,证两线同时平行于第三条直线;
③利用线面平行的性质定理把证线线平行转化为证线面平行,转化思想在立体几何中贯穿始终,转化的途径是把空间问题转化为平面问题;
④三角形的中位线;
⑤证两线是平行四边形的对边.
本文来自:逍遥右脑记忆 /gaozhong/691054.html
相关阅读:高中数学:扇形的面积公式_高中数学公式
高中数学学习方法:高二数学复习八大原则
科学把握数学新课标
三角函数图象性质
高考数学复习:系统梳理 重点掌握