(1)顾名思义,“斜率”就是“倾斜的程度”。过去我们在学习解直角三角形时,都科书上就说过:斜坡坡面的铅直高度h与水平宽度l的比值i叫做坡度;如果把坡面与水平面的夹角α叫做坡度,那么;坡度越大<=>α角越大<=>坡面越陡,所以i=tgα可以反映坡面倾斜的程度。
高中学习方法 现在我们学习的斜率k,等于所对应的直线(有无数条,它们彼此平行)的倾斜角(只有一个)α的正切,可以反映这样的直线对于x轴倾斜的程度。实际上,“斜率”的概念与工程问题中的“坡度”是一致的。
(2)解析几何中,要通过点的坐标和直线方程来研究直线通过坐标计算求得,使方程形式上较为简单。如果只用倾斜角一个概念,那么它在实际上相当于反正切函数值arctgk,难于直接通过坐标计算求得,并使方程形式变得复杂。
(3)坐标平面内,每一条直线都有唯一的倾斜角,但不是每一条直线都有斜率,倾斜角是90°的直线(即x轴的垂线)没有斜率。在今后的学习中,经常要对直线是否有斜率分情况进行讨论。
本文来自:逍遥右脑记忆 /gaozhong/65147.html
相关阅读:科学把握数学新课标
高中数学学习方法:高二数学复习八大原则
高考数学复习:系统梳理 重点掌握
三角函数图象性质
高中数学:扇形的面积公式_高中数学公式