数学创新能力是数学的一般能力,包括对数学问题的质疑能力、建立数学模型的能力(即把实际问题转化为数学问题的能力)、对数学问题猜测的能力等,在数学教学过程中,教师应特别重视对学生创新能力的培养,使每一个学生都养成独立分析问题、探索问题、解决问题和延伸问题的习惯。让所有的学生都有能力提出新见解、发现新思路、解决新问题。数学创新能力的培养相比数学知识的传授更重要,数学创新能力的培养有利于学生形成良好的数学的思维品质以及运用数学思想方法的能力。
一、培养学生善思、善想、善问的数学品质,提高质疑能力
就研究性学习而言,需要培养学生发现问题和提出问题的能力,而发现问题和提出问题需要一定的方法,这些方法应在课堂教学中逐步培养。高中学生对数学知识的获得大多表现在记忆和解题上,缺乏对知识间的联系和分析,被动接受的多,主动反思的少。?
如我在讲授《数学归纳法》一课时,有意设计了下面三个问题。问题1:今天,据观察第一个到学校的是男同学,第二个到学校的也是男同学,第三个到学校的还是男同学,于是,我得出:这所学校里的学生都是男同学。(学生:窃窃私语,哄堂大笑??以偏概全)。问题2:数列{an}的通项公式为an=(n2-5n+5)2,计算得a1=1,a2=1,a3=1,可以猜出数列{an}的通项公式为:an=1(此时,绝大部分学生不作声??默认,有一学生突然说:当n=5时,an=25,a5≠1,这时一位平时非常谨慎的女生说:“老师今天你第二次说错了”)。问题3:三角形的内角和为180°,四边形的内角和为2*180°,五边形的内角和为3*180°,……,显然有:凸n边形的内角和为(n-2)*180°。(说到这里,我说:“这次老师没有讲错吧?”)上述三个问题思维方式都是从特殊到一般,问题1、2得到的结论是错的,那么问题3是否也错误?为什么?(学生茫然,不敢质疑)。合理地利用材料,提出好的问题,引出课题,揭示了本节知识的必要性。通过让学生自主参与知识产生、形成的过程,获得亲身体验,逐步形成一种在日常学习与生活中爱置疑、乐探究的心理倾向,激发探索和创新的积极欲望。不仅使学生理解了归纳法,而且掌握了分析、判断、研究一般问题的方法。
高中学生的数学创新能力主要表现在:①在解题上提出新颖,简洁,独特方法。②运用类比的方法对某些结论进行推广和延伸,获的更一般的结论。如某年度高考题:“在等差数列{an}中,若a10=0,则有等式a1+a2+……an=a1+a2+……+a19-n(n<19,n∈n=成立。类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式______成立”。用有关等差数列和等比数列概念和类比的方法,辩明等差数列和式两边元素下标的关系;运用类比的手段,将已知等差数列的性质拓展到等比数列的性质,无疑发现了解决上述问题的通道,这是一个创新的过程。类比的结论不一定都正确,对问题的质疑比单一的解题,其效果是不一样的,如在等差数列{an}中,sm=a1+a2+……+am,则sm,s2m?-sm,s3m-s2m?成等差数列,能否类比到等比数列{bn}中,sm,s2m-sm,s3m-s2m成也等比数列,许多学生可能会证明它是正确,但这结论恰恰是错误的(当a1=2,公比q=-1时,s2=s4-s2=s6-s4=0)。
首页上一页12下一页末页共2页
本文来自:逍遥右脑记忆 /gaozhong/633976.html
相关阅读:高中数学学习方法:高二数学复习八大原则
高中数学:扇形的面积公式_高中数学公式
高考数学复习:系统梳理 重点掌握
科学把握数学新课标
三角函数图象性质