生命科学是自然科学中的一个重要的分支。在高中生物课程中,高中学习方法,它要求学生具备理科的思维方式。因此在教学中,教师应注重理科思维的培养,树立理科意识,渗透数学建模思想。本文在此谈谈,在生物教学中的几个数学建模问题。
1 高中生物教学中的数学建模
数学是一门工具学科,在高中的物理与化学学科中广泛的应用。由于高中生物学科以描述性的语言为主,学生不善于运用数学工具来解决生物学上的一些问题。这些需要教师在平时的课堂教学中给予提炼总结,并进行数学建模。所谓数学建模(Mathematical Modelling),就是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模。在生物学科教学中,构建数学模型,对理科思维培养也起到一定的作用。
2 数学建模思想在生物学中的应用
2.1 数形结合思想的应用
生物图形与数学曲线相结合的试题是比较常见的一种题型。它能考查学生的分析、推理与综合能力。这类试题从数形结合的角度,考查学生用数学图形来表述生物学知识,体现理科思维的逻辑性。
例1:下图1表示某种生物细胞分裂的不同时期与每条染色体DNA含量变化的关系;图2表示处于细胞分裂不同时期的细胞图像。以下说法正确的是( )
A、图2中甲细胞处于图1中的BC段,图2中丙细胞处于图1中的DE段
B、图1中CD段变化发生在减数Ⅱ后期或有丝分裂后期
C、就图2中的甲分析可知,该细胞含有2个染色体组,秋水仙素能阻止其进一步分裂
D、图2中的三个细胞不可能在同一种组织中出现
解析:这是一道比较典型的数形结合题型:从图2上的染色体形态不难辨别甲为有丝分裂后期、乙为减Ⅱ后期和丙为减Ⅱ中期;而图1中的AB段表示的是间的(S期)正在进行DNA复制的过程,BC段表示的是存在姐妹染色单体(含2个DNA分子)的染色体,DE段表示的是着丝点断裂后的只含1个DNA的染色体。此题的答案是B。
2.2 排列与组合的应用
排列与组合作为高中数学的重要知识。在减数分裂过程中,减Ⅰ分裂(中期)的同源染色体在细胞中央的不同排列方式,在细胞两极出现不同的染色体组合,最终形成不同基因组成的配子,这是遗传的分离定律与自由组合定律细胞学证据。同样,遗传信息的传递与表达过程中,也涉及到碱基的排列与密码子的组合方式。因此,教师在教学中,从具体的实例出发,结合排列与组合知识,解决生物学上的一些疑难问题。
例2:果蝇的合子有8个染色体,其中4个来自母本(卵子),4个来自父本(精子)。当合子变为成虫时,成虫又产生配子(卵子或精子,视性别而定)时,在每一配子中有多少染色体是来自父本的,多少个是来自母本的?( )
A、4个来自父本,4个来自母本
B、卵子中4个来自母本,精子中4个来自父本
C、1个来自一个亲本,3个来自另一亲本
D、0、1、2、3或4个来自母本,4、3、2、1或0来自父本(共有5种可能)
解析:染色体在形成配子时完全是独立分配的,因为在同源染色体发生联会后,二价体在赤道板上的排列方位是完全随机的,因此每个配子所得到的4个染色体也是完全随机的。每个配干所得到的一套染色体有可能是五种组合中的一种,实际上每种组合又会有不同的情况。如将这4对染色体分别命名为 m1(母源来的第一染色体)以及 m2、m3、m4和p1(父源来的第一染色体)、p2、p3和p4。那么上述情况下,配子有可能是:m1 m2 m3 m 4;m1 p2 p3 p4;m2 p1 p3 p4;m3 p1 p2 p4 ……p1 p2 p3 p4。因此,当我们不仅考虑数量,而且也考虑到质量时,4对染色体的配子组合数应为24=16。在只考虑数量时,此题答案为D。
[1]
本文来自:逍遥右脑记忆 /gaozhong/61419.html
相关阅读:定时定向递送miRNA的新载体治疗骨质疏松
高中生物的“学习策略”
人神经胶质母细胞瘤的干细胞起源和精准干预研究获进展
少揭“伤疤”,多贴“膏药”
2016年高考备考:生物基础知识111条