欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

集合间的基本关系过关检测题

编辑: 路逍遥 关键词: 高中数学 来源: 记忆方法网

1.下列六个关系式,其中正确的有(  )
①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅ {0};⑥0∈{0}.
A.6个         B.5个
C.4个 D.3个及3个以下
解析:选C.①②⑤⑥正确.
2.已知集合A,B,若A不是B的子集,则下列命题中正确的是(  )
A.对任意的a∈A,都有a∉B
B.对任意的b∈B,都有b∈A
C.存在a0,满足a0∈A,a0∉B
D.存在a0,满足a0∈A,a0∈B
解析:选C.A不是B的子集,也就是说A中存在不是B中的元素,显然正是C选项要表达的.对于A和B选项,取A={1,2},B={2,3}可否定,对于D选项,取A={1},B={2,3}可否定.
3.设A={x1<x<2},B={xx<a},若A B,则a的取值范围是(  )
A.a≥2 B.a≤1
C.a≥1 D.a≤2
解析:选A.A={x1<x<2},B={xx<a},要使A B,则应有a≥2.
4.集合M={xx2-3x-a2+2=0,a∈R}的子集的个数为________.
解析:∵Δ=9-4(2-a2)=1+4a2>0,∴M恒有2个元素,所以子集有4个.
答案:4

1.如果A={xx>-1},那么(  )
A.0⊆A B.{0}∈A
C.&empty,高中英语;∈A D.{0}⊆A
解析:选D.A、B、C的关系符号是错误的.
2.已知集合A={x-1<x<2},B={x0<x<1},则(  )
A.A>B B.A B
C.B A D.A⊆B
解析:选C.利用数轴(图略)可看出x∈B⇒x∈A,但x∈A⇒x∈B不成立.
3.定义A-B={xx∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A-B等于(  )
A.A B.B
C.{2} D.{1,7,9}
解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.
4.以下共有6组集合.
(1)A={(-5,3)},B={-5,3};
(2)M={1,-3},N={3,-1};
(3)M=∅,N={0};
(4)M={π},N={3.1415};
(5)M={xx是小数},N={xx是实数};
(6)M={xx2-3x+2=0},N={yy2-3y+2=0}.
其中表示相等的集合有(  )
A.2组 B.3组
C.4组 D.5组
解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.
5.定义集合间的一种运算“*”满足:A*B={ωω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B={2,3},则A*B的子集的个数是(  )
A.4 B.8
C.16 D.32
解析:选B.在集合A和B中分别取出元素进行*的运算,有0•2•(0+2)=0•3•(0+3)=0,1•2•(1+2)=6,1•3•(1+3)=12,因此可知A*B={0,6,12},因此其子集个数为23=8,选B.
6.设B={1,2},A={xx⊆B},则A与B的关系是(  )
A.A⊆B B.B⊆A
C.A∈B D.B∈A
解析:选D.∵B的子集为{1},{2},{1,2},∅,
∴A={xx⊆B}={{1},{2},{1,2},∅},∴B∈A.
7.设x,y∈R,A={(x,y)y=x},B={(x,y)yx=1},则A、B间的关系为________.
解析:在A中,(0,0)∈A,而(0,0)∉B,故B A.
答案:B A
8.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则a的值为________.
解析:A⊇B,则a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2.
答案:-1或2
9.已知A={xx<-1或x>5},B={xa≤x<a+4},若A B,则实数a的取值范围是________.
解析:作出数轴可得,要使A B,则必须a+4≤-1或a>5,解之得{aa>5或a≤-5}.
答案:{aa>5或a≤-5}
10.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.
解:①若a+b=aca+2b=ac2,消去b得a+ac2-2ac=0,
即a(c2-2c+1)=0.
当a=0时,集合B中的三个元素相同,不满足集合中元素的互异性,
故a≠0,c2-2c+1=0,即c=1;
当c=1时,集合B中的三个元素也相同,
∴c=1舍去,即此时无解.
②若a+b=ac2a+2b=ac,消去b得2ac2-ac-a=0,
即a(2c2-c-1)=0.
∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0.
又∵c≠1,∴c=-12.
11.已知集合A={x1≤x≤2},B={x1≤x≤a,a≥1}.
(1)若A B,求a的取值范围;
(2)若B⊆A,求a的取值范围.
解:(1)若A B,由图可知,a>2.

(2)若B⊆A,由图可知,1≤a≤2.

12.若集合A={xx2+x-6=0},B={xmx+1=0},且B A,求实数m的值.
解:A={xx2+x-6=0}={-3,2}.
∵B A,∴mx+1=0的解为-3或2或无解.
当mx+1=0的解为-3时,
由m•(-3)+1=0,得m=13;
当mx+1=0的解为2时,
由m•2+1=0,得m=-12;
当mx+1=0无解时,m=0.
综上所述,m=13或m=-12或m=0.

本文来自:逍遥右脑记忆 /gaozhong/59811.html

相关阅读:科学把握数学新课标
高中数学学习方法:高二数学复习八大原则
高中数学:扇形的面积公式_高中数学公式
高考数学复习:系统梳理 重点掌握
三角函数图象性质