摘要:在高中数学教学中,为了培养学生的创造性思维,应依据课程标准,充分尊重学生的独立思考精神,尽量鼓励他们探索问题、自己得出结论,支持他们大胆怀疑、勇于创新。
关键词:高中数学,观察,猜想,质疑,统摄,创造性思维
数学是一门基础学科,具有严密的逻辑性和抽象性。在高中数学教学中,要遵循新课程标准,用科学的教学方法,激发学生的求知欲望,培养学生的创造性思维。所谓创造性思维,是指带有创见的思维。通过这一思维,不仅能揭露客观事物的本质、内在联系,而且在此基础上能产生出新颖、独特的东西。更具体地说,是指学生在学习过程中,善于独立思索和分析,不因循守旧,能主动探索、积极创新的思维因素。比如独立地、创造性地掌握数学知识,对数学问题的系统阐述,对已知定理或公式的“重新发现”或“独立证明”,提出有一定价值的新见解等,均可视为学生的创造性思维成果,它具有独创性、求异性、联想性、灵活性、综合性特征。
一、注重发展学生的观察力,是培养学生创造性思维的基础
观察是智力的门户,是思维的前哨,是启动思维的按钮。观察得深刻与否,决定着创造性思维的形成。因此,引导学生明白对一个问题不要急于按想的套路求解,而要深刻观察、去伪存真,这不但能为最终解决问题奠定基础,而且,也可能有创见性地寻找到解决问题的契机。
例1:求lgtg1°·lgtg2°·…lgtg89°的值。
凭直觉我们可能从问题的结构中去寻求规律性,但这显然是知识经验所产生的负迁移,这种思维定势的干扰表现为思维的呆板性,而深刻地观察、细致地分析,克服了这种思维弊端,形成了自己有创见的思维模式。在这里,我们可以引导学生深入观察,发现题中所显示的规律只是一种迷人的假象,并不能帮助解题,突破这种定势的干扰,最终发现题中隐含的条件lgtg45°=0这个关键点,从而能迅速地得出问题的答案。
二、提高学生猜想能力,是培养学生创造性思维的关键
例2:在直线l上同侧有C、D两点,在直线l上要求找出一点M,使它对C、D两点的张角最大。
本题的解不能一眼就看出,这时我们可以这样去引导学生:假设动点M在直线l上从左向右逐渐移动,并随时观察∠α的变化,可发现:开始时张角极小,随着M点的右移,张角逐渐增大,当接近K点时,张角又逐渐变小(到了K点,张角等于0)。于是初步猜想,在这两个极端情况之间一定存在一点M0,它对C、D两点所张角最大。
如果结合圆弧的圆周角的知识,便可进一步猜想:过C、D两点所作圆与直线l相切,切点M0即为所求。然而,过C、D两点且与直线l相切的圆是否只有一个,我们还需要再进一步引导学生猜想。这样随着猜想的不断深入,学生的创造性动机被有效地激发出来,创造性思维得到了较好的培养。
首页上一页12下一页末页共2页
本文来自:逍遥右脑记忆 /gaozhong/384197.html
相关阅读:科学把握数学新课标
高中数学:扇形的面积公式_高中数学公式
三角函数图象性质
高考数学复习:系统梳理 重点掌握
高中数学学习方法:高二数学复习八大原则