摘 要:数学开放题有利于学生根据自己的认知结构对问题作出解释,实现对知识的主动建构,获得认知结构的改造和重组。由于数学开放题强调了学生获得解答的过程,体现了学生在教学活动中的真正主体地位,从而极大地提高了学生的学习积极性,是克服“灌输式”教学倾向的解药。因此,对广大数学教师的教学经验进行总结,主动接受建构主义教学理论的指导,构建中国式的数学开放题及其教学模式是对学生进行素质教育的一种有效途径。
关键词:数学;数学开放题;开放题的研究;教育价值与设计艺术。
传统的教师中心“遗传”基因,直到今天依然存在,而且严重地影响着数学教师的教
学观念,影响着数学教育的发展。
近年来,数学开放题作为一个具有时代特色的数学教育改革的亮点,已日益引起我国数学教育界的注意,逐渐形成为数学教学改革的一个热点。1998年的全国高等学校招生统一考试数学试题里“开放题”居然也堂皇入室。
一、何谓开放题?
(1)开放题是指那些答案不唯一,并在设问方式上要求学生进行多方面、多角度、多层次探索的问题。 (2)开放题并不是普通的数学问题,而是为了达到一定的教育目的而精心编制设计的数学问题。
一道数学题的开放性(开放度)在很大程度上取决于这道题采用何种设问方式。即使是一道传统的封闭性数学题,也可以通过改变其设问方式而将其改编为具有开放性的习题。要求学生进行多方面、多角度、多层次探索是一种“开放性的解题要求”,通常使用“试尽可能多地……”一类的词语来提出,它对学生具有“鼓励参与,激励优化,追 求卓越”的作用。
二、为何研究开放题
目前人们普遍认为素质教育的核心是培养创新精神和创造能力,而开放题教学是推进数学素质教育的一个切入点和突破口。开放题给学生进行创造性学习提供了宽松、自由的环境,它的作用体现在以下几个方面:
1、开放题的教育作用:
① 发散性 学生必须打破原有的思维模式,展开联想和想象的翅膀,从多角度、多方位、多层次进行探讨,其思维方向和模式的发散性有利于创造性能力的形成。
② 探索性 因为开放题易使学生形成原有认知结构和新认知结构的冲突,学生必须通过顺应来主动建构新的认知结构,因而有利于培养他们的探索意识和创新精神。
③ 趣味性 开放题独特的叙述方式、宽松的解题环境和极富挑战性的解题策略,为学生在迫切要求下进行数学学习创造了条件,有利于激发学生的好奇心和好胜心,增强了学习的内驱力,对数学探索产生浓厚兴趣。
④ 多样性 在开放题教学中,既要有学生独立思考的个体活动,还需有师生之间、学生之间的合作、讨论、交流的群体活动。开放题答案的多样性,使得其最终的解决只靠个人的力量在有限的时间内难以完成,需要依靠集体的智慧和群体的力量。
⑤ 主体性 开放题教学是以学生为中心,有利于保障学生的主体地位,使学生真正成为学习的主人。
⑥ 竞争性 开放题解答的多样性和差异性,使其有了优与劣、多与少、简与繁的区别。也正是这种差异的存在,激发了学生的好胜心,使竞争意识悄然地渗入学生的头脑,把竞争机制引入开放题的课堂教学。
⑦ 创造性 在开放题的解答过程中,没有固定的、现成的模式可循,靠死记硬背、机械模仿找不到问题的解答,学生必须充分调动自己的知识储备,积极开展智力活动,用多种思维方法(如联想、猜测、直觉、类比,等等)进行思考和探索,因而开放题是提高学生创造能力的有效工具,是培养创造人才的摇篮。
2、开放题的转化作用:
(1)开放题对教师观念的转变: 开放题的出现以及对其教育功能的肯定,一方面反映了人们数学教育观念的转变;另一方面适应了飞速发展的时代的需要。实际上反映了人们对于数学教学新模式的追求,是人们站在新时代历史的高度上对数学教育改革的新探索。
① 观念转变的原因:
a.当技术的发展已使社会数学化,数学的应用已渗透到开放社会的各个方面的时候,我们不应满足于陈旧的、封闭的教学方法。
b.数学不能仅仅理解为一门演绎科学,数学还有其更重要的一面,即它是一门非逻辑的、生动的、有丰富创造力的科学。
c.数学教学是学生创新活动的过程,仅仅靠教师的传授,不能使学生获得真正的数学知识。
d.在数学教学活动中,学生是教学认知的主体,没有学生的积极参与就没有名副其实的教学活动,教师的作用主要体现在他是教学活动的组织者、指导者和鼓励者。
② 观念转变的内容:
a.我国教育部基础教育司明确指出:“课程是一个历史范畴,课程目标、课程结构、课程内容都将随着时代的发展而变革。”“教科书”应体现科学性、基础性和开放性。
b.开放题课堂教学中的数学观即对数学本质的认识,教师的数学观直接影响着他的教学观。如果教师能用动态的、全面的观点来理解数学,那么他所采用的教学方法就会是启发式的,其教学观就是以学生为中心。
(2)开放题对教师角色的转变: 在开放题教学中,教师的角色定位,即在教学过程中,教师不是教学活动的主角,而是“编剧”和“导演”;不是知识的传授者,而是教学内容和教学活动的设计者、促进者、示范者、组织者、调控者。
在开放题教学中,应特别强调的是教师除要具备传统意义上的那些专业素质外,还应具有创造能力(尤其是进行创造教学的能力)和自觉反省自身数学观、教育价值观和教学观的意识。
三、开放题的特点
① 问题的条件常常是不完备的;
② 问题的答案是不确定的,具有层次性。
③ 问题的解决策略具有非常规性、发散性和创新性。
④ 问题的研究具有探索性和发展性。
⑤ 问题的教学具有参与性和学生主体性。由于开放题没有固定的标准答案,这就使教师在课堂教学中难以使用“灌输式”的教学方法,学生主动参与解题活动不但成为可能,而且是非常自然和必要的。一些学生希望老师与学生一起来分享这种成功的喜悦,任何一个好教师都不会压制学生的这种愿望,这就使课堂教学自然地走向了以学生主动参与为主要特征的开放式的教学。案例:设计花坛。
四、开放题的分类
(1)设计条件的开放 传统的答题模式多数是条件与结论——对应的定式训练,解题时不必考虑条件的由来。然而现实生活中人们得到的信息对于某个具体问题而言绝大多数是无用的,必须善于从大量信息中筛选出有用的信息。因此有意设计一些条件过剩或不足的开放题会更好地完善学生的认知结构。若设计成求一个三角形面积(单位:分米),则效果不大一样。
(2)设计结论的开放 这类题的条件和问题都很明确,而结论却不惟一,具有发散性和多面性。例如:将“如一把木块平均分成三块完全一样的长方体后表面积增加了多少(单位:厘米)”的常规题去掉图中虚线,则成结论开放题。
(3)设计策略的开放 这类题解题思路多种多样。教学时应充分利用其开放功能,引导学生多角度地进行分析思考,以培养学生思维的发散性和灵活性。
首页上一页12下一页末页共2页
本文来自:逍遥右脑记忆 /gaozhong/344145.html
相关阅读:科学把握数学新课标
三角函数图象性质
高考数学复习:系统梳理 重点掌握
高中数学:扇形的面积公式_高中数学公式
高中数学学习方法:高二数学复习八大原则