欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

高一数学《函数的奇偶性》教案

编辑: 路逍遥 关键词: 高中数学 来源: 记忆方法网

课题:1.3.2函数的奇偶性
一、三维目标:
与技能:使理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与:通过设置问题情境培养学生判断、推断的。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的品质。
二、重、难点:
重点:函数的奇偶性的概念。
难点:函数奇偶性的判断。
三、学法指导:
学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识链接:
1.在学习的轴对称图形和中心对称图形的定义:

2.分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。
五、学习过程:
函数的奇偶性:
(1)对于函数 ,其定义域关于原点对称:
如果______________________________________,那么函数 为奇函数;
如果______________________________________,那么函数 为偶函数。
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。
(3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。
六、达标训练:
A1、判断下列函数的奇偶性。
(1)f(x)=x4;    (2)f(x)=x5;
(3)f(x)=x+     (4)f(x)=

A2、二次函数 ( )是偶函数,则b=___________ .
B3、已知 ,其中 为常数,若 ,则
_______ .
B4、若函数 是定义在R上的奇函数,则函数 的图象关于 ( )
(A) 轴对称 (B) 轴对称 (C)原点对称 (D)以上均不对
B5、如果定义在区间 上的函数 为奇函数,则 =_____ .
C6、若函数 是定义在R上的奇函数,且当 时, ,那么当
时, =_______ .
D7、设 是 上的奇函数, ,当 时 高中化学, ,则 等于 ( )
(A)0.5 (B) (C)1.5 (D)
D8、定义在 上的奇函数 ,则常数 ____ , _____ .
七、学习小结:
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。

八、课后反思:

本文来自:逍遥右脑记忆 /gaozhong/32545.html

相关阅读:高考数学复习:系统梳理 重点掌握
三角函数图象性质
高中数学:扇形的面积公式_高中数学公式
科学把握数学新课标
高中数学学习方法:高二数学复习八大原则