[注]:①一个棱锥可以四各面都为直角三角形.
②一个棱柱可以分成等体积的三个三棱锥;所以.
⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.
[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)
ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等
iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.
②正棱锥的侧面积:(底面周长为,斜高为)
③棱锥的侧面积与底面积的射影公式:(侧面与底面成的二面角为)
附:以知⊥,,为二面角.
则①,② 高中英语,③ ①②③得
.
注:S为任意多边形的面积(可分别多个三角形的).
本文来自:逍遥右脑记忆 /gaozhong/31998.html
相关阅读:高中数学:扇形的面积公式_高中数学公式
科学把握数学新课标
三角函数图象性质
高考数学复习:系统梳理 重点掌握
高中数学学习方法:高二数学复习八大原则