欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

高中数学知识点:用向量方法解决线线、线面、面面的夹角问题

编辑: 路逍遥 关键词: 高中数学 来源: 记忆方法网

异面直线所成角



(其中为异面直线a,b所成角,分别表示异面直线a,b的方向向量)。


直线AB与平面所成角:


为平面α的法向量);


二面角的平面角:


为平面α,β的法向量)。



用向量求异面直线所成角注意:


①求异面直线所成的角常用平移法或向量法,特别是向量法,由于降低了空间想象的要求,所以需引起我们的重视,用向量法时,需注意两异面直线夹角的范围是
②两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角.


求直线与平面所成的角既可选择传统立体几何的综合推理法,也可选择空间向量的向量法:


①求直线和平面所成角的步骤:作出斜线与其射影所成的角;证明所作的角就是要求的角;常在直角三角形(垂线、斜线、射影所组成的直角三角形)中解出所求角的大小:
②在用向量法求直线OP与α所成的角时一般有两种途径:一是直接求其中OP′,为斜线OP在平面α内的射影;二是通过求进而转化求解,其中n为平面α的法向量。


用向量求二面角注意:


①当法向量的方向分别指向二面角的内侧与外侧时,二面角θ的大小等于法向量的夹角的大小;
②当法向量的方向同时指向二面角的内侧或外侧时,二面角θ的大小等于法向量的夹角的补角的大小.


求二面角,大致有两种基本方法:


(1)传统立体几何的综合推理法:①定义法;②垂面法;③三垂线定理法;④射影面积法.
(2)空间向量的坐标法:建系并确定点及向量的坐标,分别求出两个平面的法向量,通过求两个法向量的夹角得出二面角的大小.



本文来自:逍遥右脑记忆 /gaozhong/274655.html

相关阅读:高中数学:扇形的面积公式_高中数学公式
科学把握数学新课标
三角函数图象性质
高中数学学习方法:高二数学复习八大原则
高考数学复习:系统梳理 重点掌握