欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

圆的标准方程的数学方法

编辑: 路逍遥 关键词: 高中数学 来源: 记忆方法网

高二数学中圆的标准方程,主要引入了一些新的概念,探索圆的方程,写出圆的方程,掌握一些几何计算能力。

1.教学目标

(1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

(2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

2.使学生加深对数形结合思想和待定系数法的理解;

3.增强学生用数学的意识.

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

2.教学重点.难点

(1)教学重点:圆的标准方程的求法及其应用.

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

当的坐标系解决与圆有关的实际问题.

3.教学过程

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

[引导] 画图建系

[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

将x=2.7代入,得 .

即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

答:x2 y2=r2

2.如果圆心在 ,半径为 时又如何呢?

[学生活动] 探究圆的方程。

[教师预设] 方法一:坐标法

如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={MMC=r}

由两点间的距离公式,点M适合的条件可表示为 ①

把①式两边平方,得(x?a)2 (y?b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

I.直接应用(内化新知)

问题三:1.写出下列各圆的方程(课本P77练习1)

(1)圆心在原点,半径为3;

(2)圆心在 ,半径为 ;

(3)经过点 ,圆心在点 .

2.根据圆的方程写出圆心和半径


本文来自:逍遥右脑记忆 /gaozhong/210910.html

相关阅读:高中数学学习方法:高二数学复习八大原则
高考数学复习:系统梳理 重点掌握
三角函数图象性质
高中数学:扇形的面积公式_高中数学公式
科学把握数学新课标