【摘要】高三的同学们正在第一轮的复习阶段,小编为同学们整理了数学答题策略,供大家参考,大家要好好复习哦。
一、历年高考数学试卷的启发
1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;
2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。当然,我们也要考虑结论的独立性;
3.注意题目中的小括号括起来的部分,那往往是解题的关键;
二、答题策略选择
1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;
2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。切记不要“小题大做”。注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。多写不会扣分,写了就可能得分。
三、答题思想方法
1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
4.选择与填空中出现不等式的题目,优选特殊值法;
5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
本文来自:逍遥右脑记忆 /gaozhong/209730.html
相关阅读:科学把握数学新课标
高中数学学习方法:高二数学复习八大原则
高考数学复习:系统梳理 重点掌握
高中数学:扇形的面积公式_高中数学公式
三角函数图象性质