欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

有关平面向量的公式的高中数学知识点总结

编辑: 路逍遥 关键词: 高中数学 来源: 记忆方法网

鉴于数学知识点的重要性,小编为您提供了这篇有关平面向量的公式的高中数学知识点总结,希望对同学们的数学有所帮助。

定比分点

定比分点公式(向量P1P=λ•向量PP2)

设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。

若P1(x1,y1),P2(x2,y2),P(x,y),则有

OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

x=(x1+λx2)/(1+λ),

y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

我们把上面的式子叫做有向线段P1P2的定比分点公式

三点共线定理

若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线

三角形重心判断式

在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

[编辑本段]向量共线的重要条件

若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

a//b的重要条件是 xy'-x'y=0。

零向量0平行于任何向量。

[编辑本段]向量垂直的充要条件

a⊥b的充要条件是 a•b=0。

a⊥b的充要条件是 xx'+yy'=0。

零向量0垂直于任何向量.

设a=(x,y),b=(x',y')。

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

AB-AC=CB. 即“共同起点,指向被减”

a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且?λa?=?λ?•?a?。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当?λ?>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的?λ?倍;

当?λ?<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的?λ?倍。

数与向量的乘法满足下面的运算律

结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=a•b•cos〈a,b〉;若a、b共线,则a•b=+-?a??b?。

向量的数量积的坐标表示:a•b=x•x'+y•y'。

向量的数量积的运算律

a•b=b•a(交换律);

(λa)•b=λ(a•b)(关于数乘法的结合律);

(a+b)•c=a•c+b•c(分配律);

向量的数量积的性质

a•a=a的平方。

a⊥b 〈=〉a•b=0。

a•b≤a•b。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。

2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。

3、a•b≠a•b

4、由 a=b ,推不出 a=b或a=-b。

4、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:?a×b?=a•b•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

?a×b?是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的。

向量的三角形不等式

1、??a?-?b??≤?a+b?≤?a?+?b?;

① 当且仅当a、b反向时,左边取等号;

② 当且仅当a、b同向时,右边取等号。

2、??a?-?b??≤?a-b?≤?a?+?b?。

① 当且仅当a、b同向时,左边取等号;

② 当且仅当a、b反向时,右边取等号。

这篇有关平面向量的公式的高中数学知识点总结,是小编精心为同学们准备的,祝大家学习愉快!


本文来自:逍遥右脑记忆 /gaozhong/185674.html

相关阅读:高考数学复习:系统梳理 重点掌握
科学把握数学新课标
三角函数图象性质
高中数学学习方法:高二数学复习八大原则
高中数学:扇形的面积公式_高中数学公式