《普通高中课程标准实验教科书·数学2(必修)》包括空间几何体,点、直线、平面之间的位置关系,直线与方程,圆与方程四章内容。它们是在义务教育阶段“空间与图形”等有关知识的基础上,学习立体几何与平面解析几何的初步知识。
本册教科书共安排了36课时的内容,具体分配如下(仅供参考)。
第一章 空间几何体 约8课时
第二章 点、直线、平面之间的位置关系 约10课时
第三章 直线与方程 约9课时
第四章 圆与方程 约8课时
一、本模块的内容与地位作用
几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。立体几何是几何学的重要组成部分。为了使学生能够从现实世界中的具体实物抽象出几何图形,建立点、直线和平面的概念,培养他们的空间观念和想象能力,以及运用这些几何知识解决问题的能力,《普通高中数学课程标准(实验稿)》把立体几何的教学分成两部分。第一部分是在必修课程的立体几何初步中,将从现实世界中具体实物的整体观察入手,认识最基本的空间几何图形(柱、锥、台、球)及其直观图的画法,并了解这些简单几何体的表面积与体积的计算方法。然后,再以长方体为载体,直观认识和理解空间点、直线、平面的概念及其相互位置关系;通过直观感知、操作确认、思辨论证,认识和理解有关直线和平面平行、垂直的性质与判定,论证一些有关空间直线和平面位置关系的简单命题。第二部分是在选修课程的系列2-1中,与空间中向量的学习相结合,进一步论证和解决一些有关空间图形的位置关系和度量问题。
本册教科书的第一章,通过较多的实例,引导学生观察自己身边现实世界中的建筑和实际物体,认识它们都是由柱、锥、台、球及其简单组合体构成的立体图形,并引导学生认识柱、锥、台、球的结构特征,让学生能够运用这些特征去描述现实生活中简单物体的结构。在这一章中,还要求学生学习绘制简单空间图形的三视图和直观图,了解柱、锥、台、球的表面积和体积计算公式,目的是为了帮助学生进一步发展空间观念和想象能力,画图的要求不像学习机械制图那样严格,计算公式也不要求学生记忆。
在第二章中,改变了以往教学立体几何的顺序,没有从抽象的概念出发,推导点、直线和平面的相互位置关系,而是借助直观具体的实物或长方体模型,让学生通过一系列的实际活动,直观感知、操作确认、思辩论证,认识点、直线和平面的垂直与平行等相互位置关系。使学生经历了从直观到抽象,从特殊到一般的学习过程,既学习了立体几何的知识,发展空间观念,又循序渐进地培养了学生的抽象思维和逻辑推理能力。
解析几何是通过坐标系,把几何中的点与代数的基本研究对象(有序数对)对应,建立图形(曲线)与方程的对应,从而把几何与代数紧密结合起来,用代数方法解决几何问题。这是数学的重大进步。《普通高中数学课程标准(实验稿)》在必修课程的解析几何初步中,教学在平面直角坐标系中,建立直线的代数方程和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,体会数形结合的思想,初步形成用代数方法解决几何问题的能力,并要求学生初步了解空间直角坐标系。
本册教科书的第三章,从平面上确定直线的几何要素入手,认识到由平面上的一个点和一个方向(用倾斜角的斜率表示),或者是平面上的两个点(等同于一个点和一个方向),就可以确定一条直线,再依据两条直线方程的斜率,判定它们是否平行或相互垂直。接着引导学生推导出平面上直线的方程,从点斜式、两点式到一般式,并说明在平面直角坐标系中,一切直线的方程都是二元一次方程,二元一次方程表示一条直线。在这一章中,还通过点的坐标和直线的方程,研究了两点之间的距离公式,以及点到直线的距离公式。由此,使学生初步学会运用代数的方法解决一些平面几何问题。
本册教科书的第四章,从平面上确定一个圆的几何要素入手,引导学生运用代数的语言描述圆,得到圆心为C(a,b),半径为r的圆的标准方程(x-a)2 + (y-b)2 = r2,然后再对其变形,得到圆的一般方程。然后在前一章的基础上,引导学生学习运用直线和圆的方程,研究直线与圆的位置关系,并解决一些有关的平面几何问题,使学生体会运用代数方法解决几何问题的思想。最后这一章还向学生介绍了空间直角坐标系,为今后学习空间中的向量和运用代数方法解决空间的几何问题打下基础。
二、编写中考虑的几个问题
1.立体几何的内容安排,遵循从整体到局部、具体到抽象的原则。先从现实生活中的实物讲空间几何体,再从空间几何体的整体结构,讲构成空间几何体的点、直线、平面之间的位置关系。
与以往教学立体几何的内容体系相比,本册教科书立体几何的内容体系结构有重大改革。以往立体几何教学,常从研究点、直线和平面开始,先讲它们之间的位置关系和有关公理、定理,再研究由它们组成的几何体的结构特征,几何体的体积、表面积等等,基本上是从局部到整体。现在,是先从对空间几何体的整体感受入手,再研究组成空间几何体的点、直线和平面。这种安排有助于发展学生的空间观念、培养学生的空间想象能力、几何直观能力,适当减轻几何论证的难度,降低立体几何学习入门的门槛,提高学生学习立体几何的兴趣。
第一章和第二章是一个有机的整体,第二章讲完后,可引导学生从点、直线、平面的角度重新认识空间几何体,把握空间几何体的结构特征,对空间几何体的结构特征有更本质的认识。
2.强调几何直观,渗透公理化思想,进行适当的几何推理
立体几何实际上与学生的联系非常密切,很多实物都可以看成是各式各样的空间几何体,这些物体的棱与棱、棱与面、面与面之间的关系,实际上就是直线与直线、直线与平面、平面与平面的位置关系。学习时,一方面要引导学生从生活实际出发,把知识与周围的实物联系起来,另一方面,要引导学生经历从现实的生活中抽象出空间图形的过程,注重探索空间图形位置关系,抽象概括它们的判定与性质。比如,在有关直线、平面平行与垂直判定定理的教学中,要注重引导学生通过观察、操作、有条理的思考和推理等活动,从多种角度认识直线、平面平行与垂直的判定方法;在性质定理的教学中,同样不能忽视学生从实际问题出发,进行探究的过程。要引导学生借助图形直观,通过归纳、类比等合情推理,来探索直线、平面的平行与垂直等性质及其证明,然后再一步步地过渡到比较严格的证明。
立体几何在构建直观、形象的数学模型方面有其独特作用。图形的直观,不仅为学生感受、理解抽象的概念提供了有力的支撑,而且有助于培养学生的合情推理和演绎推理能力。
欧几里得公理体系把几何与逻辑结合起来,几何就与演绎推理结下了不解之缘,很久以来几何学就成为训练逻辑推理的素材。然而就推理来说,既有合情推理,又有演绎推理,而且从数学自身发展的过程来看,即使演绎推理也并非“几何”所独有,它广泛存在于数学的各个分支中。20世纪80年代以来,国际数学教育对几何推理的要求发生了一些变化,从纯粹的演绎推理转向较少的演绎推理,更多地强调从具体情境或前提出发,进行合情推理;从单纯强调几何的逻辑推理,转向更全面地体现几何的教育价值,特别是几何在发展学生空间观念,以及观察、操作、试验、探索、合情推理等“过程性”方面的教育价值。本册教科书的第一、二两章就特别注意,使学生一步一步地从特殊到一般,从具体到抽象,认识空间直线和平面的位置关系,并在推理过程中逐步渗透公理化思想,养成言必有据的理性思维精神。
3.解析几何的教学贯穿“坐标法”的思想,突出解析几何解决问题的“三部曲”
解析几何的基本思想是“坐标法”。当我们用方程表示直线和圆,运用方程研究直线、圆的的位置关系,研究两条直线的交点、点到直线的距离、两条平行直线之间的距离等问题时,都需要把几何问题代数化,先用方程表示直线和圆,然后再通过代数运算解决有关的位置关系问题。教科书结合大量的例题,突出用坐标方法解决几何问题的“三部曲”:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:把代数运算结果“翻译”成几何结论。
4.加强数学知识内容之间的联系,体会数形结合的思想
解析几何的本质是用代数方法研究图形的几何性质,它沟通了代数与几何之间的联系,体现了数形结合的重要数学思想。对于几何中的直线,我们既从一次函数的角度研究它,又从方程的角度研究它,用数及其运算作为工具,函数与方程对直线进行了定量化描述,使对直线的研究由定性进入到定量。平面直角坐标系成为沟通平面几何、函数、解析几何的纽带,对同一个问题可以从不同的角度去认识。对圆的研究,也体现了数学知识内容之间的联系,以及数形结合的思想。
数形结合中除由“形”到“数”,用“数”研究“形”外,还要注意代数问题的几何背景,即“数”到“形”的方面,如函数图象与直角坐标系x轴的交点,直线的斜率与直线的方向和倾角等等。这也是数形结合的一个重要方面。
三、对教学的几个建议
1.认真把握《普通高级中学数学课程标准(实验)》的教学要求
与以往的立体几何教学要求相比,本册教科书在几何推理证明方面的教学要求大大降低了,削弱了以演绎推理为主要形式的定理证明,减少了定理的数量,删去了大量的几何证明题,淡化了几何证明的技巧,对于直线、平面平行和垂直的判定定理只需通过直观感知、操作确认、思辩论证的方式归纳得出,不进行系统的推理证明。同时大大地加强了对于空间图形的整体认识和把握,从看实物到想图形、再从三视图或直观图到想象空间图形;然后从空间图形的整体,到把握直线与直线、直线与平面、平面与平面的位置关系,更加强调发展学生的空间想象能力,以及联系实际运用几何知识,观察和解决现实世界中有关图形的问题。
在解析几何初步的内容中,应注意结合具体的图形(直线和圆),引导学生探索在平面上确定这些图形的几何要素,推导出它们的代数方程,进而运用方程研究它们在平面上的位置以及相互关系,体会用代数方法解决几何问题的思想。教学中要注意控制难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。比如,义务教育阶段“空间与图形”部分涉及的许多结论都可以用坐标法来加以证明,而义务教育阶段的教学要求现已有所改变。因此,用坐标法证明平面几何题要求不宜过高,适可而止。另外,传统的解析几何内容安排在三角函数后面,而现在安排在三角函数之前。当用到相关三角函数时,只在边空给出提示,让学生作为结论直接使用,不给出证明。例如,,,这些结论放在数学4时补证。
2.承上启下,注意相关知识内容的联系。通过不同数学内容的联系与启发,强调类比、推广、特殊化、化归等思想方法的运用
本册内容的起点是义务教育阶段“空间与图形”的相关知识,特别是“空间几何体”的内容。在《全日制义务教育数学课程标准(实验稿)》“空间与图形”的视图与投影内容中包括:(1)会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型;(2)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型;(3)了解基本几何体与其三视图、展开图(球除外)之间的关系,通过典型实例,知道这种关系在现实生活中的应用(如物体的包装);(4)通过实例了解中心投影和平行投影。
教学时,应适当回顾上述知识内容,在义务教育阶段学习的基础上,进一步提高对空间几何体的认识。按照“画法”→“算法” →“证法”展开知识内容。
数学2同时是进一步学习数学4中的平面向量,数学5中的解三角形,选修1-1和选修2-1中的圆锥曲线与方程,选修3-1数学史选讲中的部分专题,选修3-3球面上的几何,选修3-5欧拉公式与闭曲面分类,选修3-6三等分角与数域扩充,选修4-1几何证明选讲,选修4-4坐标系与参数方程等几何内容的基础。
在每章“小结”中,利用数学内容的内在联系,使不同的数学内容相互沟通,提高学生对数学的整体认识水平。特别地,在教科书中强调类比、推广、特殊化、化归等思想方法,尽最大可能展示以下常用的逻辑思考方法。给出与本章知识内容联系的逻辑图,让学生从更高、更广的角度认识每章的地位作用。
推广
类比当前内容类比
特殊化
3.关注现代信息技术的运用
(1)通过现代信息技术,如计算机、网络等展示丰富的图片,让学生感受大量的实物,抽象出空间几何体及其结构特征。
(2)运用现代信息技术和有关软件,制作一些课件,如动态演示空间点、直线、平面之间的位置关系,空间中的平行与垂直关系,等等。
(3)平面解析几何是一门典型的数与形结合的学科,信息技术在加强几何直观,促使数与形结合方面有着特殊的作用。借助信息技术,可以形象、直观地帮助学生认识所研究的曲线。在动态演示中,观察曲线的性质,在直观了解的基础上,寻求形成这些性质的原因以及代数表示。通过对方程的研究,了解曲线与曲线的关系时,运用信息技术,可以进一步验证得到的结果,为抽象的认识增添了形象的支持。在探究点的轨迹时,可以借助信息技术,探究轨迹的形状等等。
4.关注“观察”、“思考”、“探究”以及“阅读与思考”、 “探究与发现”、“信息技术应用”等栏目以及边空的作用
本套教科书在体例结构上有重大改革,增添了许多栏目,教学中要注意发挥边空这些栏目的作用。
问题是创新的关键,在知识形成过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,通过“观察”、“思考”、“探究”等栏目,提出恰当的、对学生数学思维有适度启发的问题,引导学生的思考和探索活动,使他们经历观察、实验、猜测、推理、交流、反思等理性思维的基本过程,切实改进学生的学习方式。
设置“观察与猜想”“阅读与思考”“探究与发现”“信息技术应用”等栏目,为学生提供丰富的具有思想性、实践性、挑战性的,反映数学本质的选学材料,拓展学生的数学活动空间,发展学生“做数学”、“用数学”的意识。
在边空中,用“问号型”图标提出数学知识形成过程中的具体问题,以旁批方式强调重要的数学思想方法或知识点。
本文来自:逍遥右脑记忆 /gaozhong/184259.html
相关阅读:高中数学学习方法:高二数学复习八大原则
科学把握数学新课标
高中数学:扇形的面积公式_高中数学公式
高考数学复习:系统梳理 重点掌握
三角函数图象性质