为了帮助学生们更好地学习高中数学,精心为大家搜集整理了“高一数学学习:集合大小定义的基本要求九”,希望对大家的数学学习有所帮助!
高一数学学习:集合大小定义的基本要求九
所谓的结构,就是在元素间增加联系,使得它们不能随便乱动。建筑工地上搭的脚手架就是一种结构,上面的钢管啊铁丝啊木板啊都不是随随便便堆在一起的,而是按照一定的方式联系在一起。修建完了一幢大楼后,工人们会把它们都拆下来再拿到另一个工地上去安装使用,虽然构成脚手架的元素——钢管铁丝木板还是原来的那些,但是脚手架却完全是另一个了,变化了的其实是结构。
数学结构也一样。比如说上面我们讲的序关系,就是元素之间的一种联系。我们可以很方便地验证自然数的大小满足我们前面所说的偏序关系的三个条件,而且每两个自然数之间都可以比较大小,所以在自然数集合上有一个全序关系,这个关系就给了自然数集合一个结构,就叫序结构。你可以把拥有全序结构的自然数集合仍旧想像成上面那个装了球的袋子,只是这时候那些球已经被从小到大串成了一串,不能随便乱跑了。平时我们想像自然数集合,可能会把它想成数轴上离原点越来越远的一串点,或者1、2、3、……这样从小到大的一列数,不知不觉地,我们已经把序结构想像进去了。当我们感到“正偶数的个数应该是自然数个数的一半,因为每隔一个数就有一个是偶数”,我们是在想像那条串成一串的球,偶数球得老老实实地和奇数球一个隔一个地串在一起,而不是杂乱无章放在袋里,后面这种情况是谈不上“每隔一个”的。
在考虑到自然数的序结构后,我们就可以给“自然数的个数是正偶数的个数的两倍”这种直觉一个合理的解释了。考虑小于100的正偶数,一共有49个,所以占小于100的自然数的49/99,接近1/2;如果把“小于100”改成“小于1000”,那么结果是499/999,更接近1/2了;把上面的100和1000换成越来越大的数字,我们会发现正偶数所占的比例会越来越接近1/2。这就提示我们可以采用这样一种关于自然数的子集的大小的定义:如果A是自然数的一个子集,令p(n)为A中小于n的元素的个数,我们称limn→∞p(n)/n(就是当n趋向无穷大时,p(n)/n的极限)为A相对于自然数集合的大小。在这个定义下,正偶数集合相对于自然数集合的大小就是1/2。按照这样的定义,素数集合相对于自然数集合的大小是0,这也就是所谓的“几乎所有的自然数都不是素数”。用上面这个方法还可以比较两个自然数集合的子集的相对大小,具体方法就由读者自己来思考了。
经过精心的整理,有关“高一数学学习:集合大小定义的基本要求九”的内容已经呈现给大家,祝大家学习愉快!
本文来自:逍遥右脑记忆 /gaozhong/178616.html
相关阅读:高考数学复习:系统梳理 重点掌握
高中数学学习方法:高二数学复习八大原则
高中数学:扇形的面积公式_高中数学公式
三角函数图象性质
科学把握数学新课标