欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

第一章《解三角形》测试题

编辑: 路逍遥 关键词: 高中数学 来源: 记忆方法网

一、选择题

 

1.(2009广东文)已知中,的对边分别为,若且,则(    ).

 

A.2            B.4+        C.4―       D.

 

考查目的:考查正弦定理、两角和的三角函数公式、三角形内角和定理.

 

答案:A.

 

解析:,由可知,,所以,.由正弦定理得.

 

2.(2012天津理)在中,角的对边分别是,已知,,则(    ).

 

A.         B.         C.         D.

 

考查目的:考查正弦定理、余弦定理、二倍角正弦公式、二倍角余弦公式.

 

答案:A

 

解析:∵,∴由正弦定理得,又∵,∴,∵,∴,∴.

 

3.(2010天津理)在中,角的对边分别是,若,,则(    ).

 

A.          B.         C.         D.

 

考查目的:考查正弦定理与余弦定理的基本应用.

 

答案:A

 

解析:∵,∴由正弦定理得,∴ ,∴.

 

4.(2010湖南文)在中,角所对的边长分别为,若,,则(    ).

 

A.        B.       C.        D.与的大小关系不能确定

 

考查目的:本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法.

 

答案:A.

 

解析:∵,,∴根据余弦定理得,即,∴,∴.

 

5.在中,为锐角,,则为(     ).

 

A.等腰三角形        B.等边三角形      C.直角三角形       D.等腰直角三角形

 

考查目的:考查对数的运算性质、正弦定理、特殊角的三角函数值、两角和与差的三角函数公式.

 

答案:D.

 

解析:根据对数的运算性质得,∴.∵为锐角,∴.由正弦定理得,∴,∴,∴,∴是等腰直角三角形.

 

6.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为,则的取值范围是                                                                          (     ).

 

A.(1,2)      B.       C.       D.

 

考查目的:考查三角形的性质、不等式的性质、正切函数的性质、正弦定理、两角差的正弦公式、特殊角的三角函数值等知识.

 

答案:B.

 

解析:设三角形三内角从小到大分别为,根据题意得,由得,,∴,根据正弦定理,.

 

二、填空题

 

7.(由2008全国卷Ⅰ文改编)设的内角所对的边长分别为,且,,则        .

 

考查目的:考查正弦定理、同角三角函数的基本关系式,以及分析问题解决问题的能力.

 

答案:5.

 

解析:由已知两式相除,并根据正弦定理得,∴为锐角,由得,代入得.

 

8.(2012北京理)在中,若,,,则           .

 

考查目的:考查余弦定理及运算求解能力.

 

答案:4.

 

解析:由余弦定理得,所以,,即,与联立,解得.

 

9.在锐角三角形中,内角所对的边长分别为,若,,,则             .

 

考查目的:考查同角三角函数的基本关系式、余弦定理、三角形面积公式及运算求解能力.

 

答案:.

 

解析:∵,为锐角,∴;由,得.又由余弦定理得,,将代入并化简整理得,解得.

 

10.在中,内角所对的边长分别为,若,,三角形面积,则=            .

 

考查目的:考查正弦定理、余弦定理、三角形面积公式以及比例的性质.

 

答案:2.

 

解析:由,,得,.又由余弦定理得,,∴,根据正弦定理及比例性质得 .

 

11.(2012安徽理)设的内角所对的边分别为,则下列命题正确的是        .

 

    ①若,则;②若,则;③若,则;④若,则;⑤若,则.

 

考查目的:考查余弦定理、不等式的性质和基本不等式、余弦函数的单调性,考察综合运用知识分析问题解决问题的能力.

 

答案:①②③

 

解析:①若,则,∴,故①为真;②若,则,∴,故②为真;③∵,∴为最大边;两边同除以得,∵,∴,∴,∴,故③为真;④若,则,∴,由①得,故④为假;⑤若,则 ,∴,故⑤为假. (注:对④⑤,也可举出反例推翻)

 

三、解答题:

 

12.(2010安徽文)的面积是,内角所对边长分别为,.

 

    ⑴求;

 

⑵若,求的值.

 

考查目的:考查同角三角函数的基本关系式、三角形面积公式、向量的数量积、利用余弦定理解三角形以及运算求解能力.

 

答案:⑴,⑵.

 

解析:由,得. 又∵,∴.

 

⑴.

 

⑵,∴.

 

13.(2009辽宁理)如图,都在同一个与水平面垂直的平面内,为两岛上的两座灯塔的塔顶. 测量船于水面处测得点和点的仰角分别为,于水面处测得点和点的仰角均为,. 试探究图中间距离与另外哪两点间距离相等,然后求的距离.(计算结果精确到,参考数据:,)

 

 

考查目的:考查特殊三角形的性质、线段的垂直平分线性质、利用正弦定理解三角形,以及分析问题解决问题的能力.

 

答案:,.

 

解析:在中,∵, ,∴. 又∵,∴是等腰底边的中垂线,∴.

 

在中,由得,∴. 即的距离约为.

 

14.(2008全国卷)在中,.

 

⑴求的值;

 

⑵设的面积,求的长.

 

考查目的:考查解三角形、同角三角函数的基本关系式、两角和与差的三角函数,考查运算求解能力.

 

答案:⑴,⑵.

 

解析:⑴由,得,,,∴ .

 

⑵由得,由⑴知,故, 又,故,.所以.

 

15.已知的角所对的边分别为,面积为,,.

 

⑴若,求;

 

⑵若为锐角,,求的取值范围.

 

考查目的:考查正弦定理、三角形面积公式、三角恒等变形、三角函数的性质以及运算求解能力.

 

答案:⑴,⑵.

 

解析:⑴ ∵,,,∴根据正弦定理得,∵,∴.

 

⑵由得,的外接圆半径,∴ ;∵,∴,;又∵为锐角,∴,∴.


本文来自:逍遥右脑记忆 /gaozhong/170185.html

相关阅读:高中数学:扇形的面积公式_高中数学公式
科学把握数学新课标
高中数学学习方法:高二数学复习八大原则
三角函数图象性质
高考数学复习:系统梳理 重点掌握