欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

一元二次方程的解法有哪些 具体解题技巧介绍

编辑: 路逍遥 关键词: 高中数学 来源: 记忆方法网

很多人对于一元二次方程的学习上上非常吃力,想知道一元二次方程有哪些解法,有哪些详细的解题技巧呢?下面下面小编为大家介绍一下!

一元二次方程的详细解法

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解法:

1、直接开平方法;2、配方法;3、公式法;4、因式分解法.

1、直接开平方法:

直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=±根号下n+m .

例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解.

(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丢解)

∴x=

∴原方程的解为x1=,x2=

9x2-24x+16=11

∴(3x-4)2=11

∴3x-4=±

∴x=

∴原方程的解为x1=,x2=

2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)

先将常数c移到方程右边:ax2+bx=-c

将二次项系数化为1:x2+x=-

方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2

方程左边成为一个完全平方式:(x+ )2=

当b^2-4ac≥0时,x+ =±

∴x=(这就是求根公式)

例2.用配方法解方程 3x^2-4x-2=0 (注:X^2是X的平方)

将常数项移到方程右边 3x^2-4x=2

将二次项系数化为1:x^2-x=

方程两边都加上一次项系数一半的平方:x^2-x+( )2= +( )2

配方:(x-)2=

直接开平方得:x-=±

∴x=

∴原方程的解为x1=,x2= .

3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a) ,(b^2-4ac≥0)就可得到方程的根.

例3.用公式法解方程 2x2-8x=-5

将方程化为一般形式:2x2-8x+5=0

∴a=2,b=-8,c=5

b^2-4ac=(-8)2-4×2×5=64-40=24>0

∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)

∴原方程的解为x1=,x2= .

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根.这种解一元二次方程的方法叫做因式分解法.

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x2+3x=0

(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)

(x+3)(x-6)=-8 化简整理得

x2-3x-10=0 (方程左边为二次三项式,右边为零)

(x-5)(x+2)=0 (方程左边分解因式)

∴x-5=0或x+2=0 (转化成两个一元一次方程)

∴x1=5,x2=-2是原方程的解.

2x2+3x=0

x(2x+3)=0 (用提公因式法将方程左边分解因式)

∴x=0或2x+3=0 (转化成两个一元一次方程)

∴x1=0,x2=-是原方程的解.

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.

6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)

∴2x-5=0或3x+10=0

∴x1=,x2=- 是原方程的解.

x2-2(+ )x+4 =0 (∵4 可分解为2 ?2 ,∴此题可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解.

一元二次方程的三个特点

(1)只含有一个未知数。

(2)未知数的最高次数是2。

(3)是整式方程。因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为的形式,那么这个方程就是一元二次方程。

一元二次方程求根公式有哪些

一元二次方程求根公式:

当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a

当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a

只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax2+bx+c=0(a≠0)

一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。

公式法可以解任何一元二次方程。

因式分解法,也就是十字相乘法,必须要把所有的项移到等号左边,并且等号左边能够分解因式,使等号右边化为0。

配方法比较简单:首先将二次项系数a化为1,然后把常数项移到等号的右边,最后在等号两边同时加上一次项系数绝对值一半的平方,左边配成完全平方式,再开方就得解了。

除此之外,还有图像解法和计算机法。

图像解法利用二次函数和根域问题粗略求解。


本文来自:逍遥右脑记忆 /gaozhong/1188095.html

相关阅读:三角函数图象性质
高考数学复习:系统梳理 重点掌握
高中数学:扇形的面积公式_高中数学公式
科学把握数学新课标
高中数学学习方法:高二数学复习八大原则