尼罗河三角洲以东,大约一千六百公里的地方,奔流着另外两条大河,一条叫底格里斯河,一条叫幼发拉底河。这两条河发源于今天的土耳其境内,流经叙利亚,在伊拉克南部汇合成阿拉伯河,最后流入波斯湾。两河之间和沿岸一带叫做美索不达米亚,是另一个最古老的文化发源地。
“美索不达米亚”一词是希腊语,意思是“两河中间的地方”。它西接阿拉伯沙漠,东邻扎格罗斯山脉。很早以前,人类就在那里生息繁殖,曾经建立了巴比伦等古国,并且创造了辉煌的美索不达米亚文化。
历史学家把这支古老的文化分为苏马连、巴比伦、亚述和迦勒底四个时期。苏马连人是美索不达米亚文化的创始者,他们在五千年以前就有了象形文字。后来的巴比伦人和亚述人继承和发展了苏马连文化,使得美索不达米亚在数学和天文学方面的一些成就超过了埃及。
在美索不达米亚和在埃及一样,文化主要把持在统治阶级僧侣手里。大约在公元前两千年,两地的僧侣分别建立了寺庙图书馆,把记载着各种知识的秘本收藏在里边。除了少数僧侣外,一般人是无法阅读这些书的。这样也就影响了这两支古老文化的传播和交流。
美索不达米亚很早就有大量的对外贸易。它自己没有建筑用的木材,没有僧侣和君王穿戴的绸缎和宝石,没有做丰盛佳肴的调料,缺少制作寺庙供器的贵重金属。为了得到这些东西,许多商人赶上毛驴或者骆驼,组成商队,翻过扎格罗斯山,穿过阿拉伯沙漠,西到黎巴嫩买杉木,北到小亚细亚买金、银、铅、钢,东面可能远到印度和中国,去换回丝绸、染料、香料和宝石。
商人们在贸易中就会遇到计量的问题。起初,他们买卖商品不是论斤两,而是按驮。比如一头驴驮的粮食换一头驴驮的棉花。但是在进行昂贵商品交易的时候,就必须精打细算了。于是,随着贸易的发展,天平和标准容器在美索不达米亚普遍使用起来。商人们在称量笨重物品的时候,用泰仑为单位(约合25公斤),称量精细物品的时候,以舍克为单位(约合9克)。
以物易物,给商人们带来沉重的负担和很多的不便。比如想要用粮食换木材,但是有木材的不一定要粮食;而要粮食的又不一定有木材。要是有一种东西大家都愿意要,那么商人们之间的贸易就会方便得多了。曾经有一个时期,差不多人人都愿意要大麦。那时候大麦除了做面包和酿酒外,还可以用来支付工资和换取任何别的东西。这样,商人们到外地做买卖,只要用毛驴和骆驼驮上大麦去,就很快换回自己所需要的东西了。
后来,人们发现银子能换的东西多,携带方便,久放不坏,人人都愿意要,是一种做买卖的好物品。开始,商人们按照成交的多少,每次都得称量银子。以后,就铸造成一小块一小块的银条,每块银条上都标好了重量。这就是世界上最早的金属货币。我国古代用银子买卖东西的情况也是这样。
金属货币的出现,使人们第一次有了一种可以长期储存、又不会变坏的财富。它促进了贸易和生产的发展!
随着贸易范围和数量的不断扩大,人们需要经常掌握买进和卖出的情况,于是又出现了记账和算账的问题。
古老的美索不达米亚文字和书写材料使得记账成为一项非常艰巨的工作。书写的时候,得先把粘土做成方形的板砖,然后用尖木棍在上面刻字,最后把泥板放在太阳下晒干或者在火上烤干。这么复杂的过程,写起来很慢,改写、保管和查看也很不方便。不过,一经写成就不容易损坏了。近年来,考古学家在两河流域发掘出成千块这种刻有楔形文字的泥板,虽然经历了几千年,上面刻写的图文仍然清晰可见。这是我们了解古代美索不达米亚文化的重要依据。
尽管当时美索不达米亚的对外贸易量大,有相当精密的度量衡,又有了金属货币,但是它的文字记账方法实在落后。幸好,那时候一般人都不采用书面的计算法,而是在地上铺一层沙子,在沙子的沟里放小石子进行计算。这个装置和埃及人的办法差不多,我们也可以把它叫做原始的算盘。它虽然简陋,却方便好用。
在美索不达米亚商人的算盘里,当一个石子在沟与沟之间移动的时候,数值也跟着相应变化:第一行为1,第二行为10×1,第三行为10×10×1,在第四行为10×10×10×1,如此等等。就是说,每一行沟里的石子比它前一行里的数值大十倍,比它后一行里的数值小十倍。用我们现在的话来说,这就是以十为基数。
大多数的古代数字系统都用十做基数。我们猜测,人们在开始的时候大概都是用十个手指来数数的。其实,“十”这个数并没有什么奇特的地方,用别的数做基数也同样很方便。美洲中部的马雅人以二十为基数,想来他们在开始的时候,很可能是用手指和脚趾一起来计数的。
美索不达米亚人有时也以六十为基数。由巴比伦人创造的六十进位制一直沿用到现在。我们今天计算时间,就是把一小时分成六十分钟,一分钟又分成六十秒;对于地球经纬度的划分,也是把一度分成六十分,每一分又分成六十秒。六十进位制的产生,可能是和天文学的发展有关系。苏马连人和巴比伦人在天文学上曾取得了很高的成就。
除了算盘,美索不达米亚人还掌握了另外一些简便的数字计算方法。在靠近幼发拉底河岸的古代庙宇图书馆遗址里,曾发掘出大量的粘土板。有不少粘土板上刻着乘法表和加法表,还有一些刻着平方表。他们用简单的平方表,就能很快算出任何两数相乘的积。现在,我们来看他们是怎样算96×102的:
第一步,(102+96)÷2=99;
第二步,(102-96)÷2=3;
第三步,查平方表,知99的平方是9801;
第四步,查平方表,知3的平方是9;
第五步,9801-9=9792=96×102。
美索不达米亚人的这种求积方法是正确的,我们用现在的代数方法很容易弄清楚它的原理。
利用平方表做乘法没有算盘方便,所以它不像算盘那样流传广,使用时间长。在很长的时期里,欧洲的商人和店员都喜欢使用象算盘那样的计算板。在中国、日本和前苏联,至今还有许多人使用着算盘。
中国和日本的算盘属于同一个来源。它的特点是梁下以一珠当一,梁上以一珠当五。这是在以十进位的基础上,添了一个五进位的中间单位。这样不仅节省了算珠,而且增加了计算的速度。
大约在六千年前,美索不达米亚人做出了世界上第一个轮子。这是人类史上最伟大的发明之一!你想,即使是今天最现代化的机械,也几乎没有一样能够离得开轮子的。
最初的轮子简单得很。它是用木头做成一个圆盘,中间挖一个洞,穿过一根木头做轴,使圆盘能绕着轴转动。
到了巴比伦和亚述的时候,出现了打仗用的战车和进行贸易的车辆。车上的轮子已经有了辐和毂等,和今天还能见到的老式车轮差不多。美索不达米亚人还发现圆木轮的其他用途。比如陶工利用旋轮制作精细的器皿,建筑工人利用滑轮吊起重物等。
由于轮子是美索不达米亚人发明的,很容易使人想象他们在那个时候一定掌握了不少关于圆的几何学知识。实际上,他们甚至还不如埃及人。埃及人计算圆的周长时,是把圆的直径乘以3.14;而美索不达米亚人在计算时用的是3。我们知道,圆周率π=3.14159……,是一个不循环的无限的小数,叫做无理数,用3来代替它,就是用正六边形的周长来代换圆的周长,是相当粗糙的计算方法。
美索不达米亚人对圆的认识虽然比埃及人差,可是他们实际运用几何的能力,特别是在天文方面却比埃及人先进。他们把太阳在天上一昼夜经过的轨道分成三百六十度。后来又把这种分法应用于一切圆形物体。他们已经会区分恒星和行星,给五个行星起了专门名称,这就是金星、火星、木星、水星、土星。
在一部五千年前献给巴比伦国王的占星学著作里,已经列出了一个很长的蚀亏表,表中关于日食和月食的日期相当准确。
巴比伦的空气清朗,僧侣们每夜观察天空的景象,并把他们的观察结果记录在土碑上。他们逐渐看出天文现象的周期性,觉察到某些天体的运动是有规律的。有一个文件说,他们已经能够计算出太阳和月亮的相对位置,所以能够预测日食和月食。
现在我们知道,地球自转一周是一日;月球绕地球转动一周为一月;地球带着月球绕太阳公转一周为一年。它们的运动都有各自的轨道。我们还知道,月球不会发光,月光是太阳光在月球表面上反射出来的。当地球运动到太阳和月亮之间的联线上时,太阳射到月球上的光线被地球遮住了,月球正好在地球投下的阴影里,月蚀就发生了。同样的道理,如果月球运动到地球和太阳之间的联线上,日蚀就发生了。美索不达米亚人能够比较准确地预告日食和月食,说明他们很可能也懂得了我们上面说的道理。
美索不达米亚人看到月偏蚀的时候,月亮上的阴影总是带着圆边,于是就猜到了地球本身也是圆的。考古学家曾经发现了一些巴比伦时代描绘的想象地图,形状就跟我们今天用的硬币差不多;还发现了这样的地图,巴比伦居中,并且占的面积很大。
本文来自:逍遥右脑记忆 /gaozhong/112673.html
相关阅读:三角函数图象性质
高中数学:扇形的面积公式_高中数学公式
高中数学学习方法:高二数学复习八大原则
高考数学复习:系统梳理 重点掌握
科学把握数学新课标