欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

高中数学知识点:指数函数模型的应用

编辑: 路逍遥 关键词: 高中数学 来源: 记忆方法网
指数函数模型的定义

恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。

指数型复合函数的性质的应用:


(1)与指数函数有关的复合函数基本上有两类:
;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.
(2)对于形如一类的指数型复合函数,有以下结论:
①函数的定义域与f(x)的定义域相同;
②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;
③当a>l时,函数与函数f(x)的单调性相同;当O<a<l时,函数与函数f(x)的单调性相反.




相关高中数学知识点:对数函数模型的应用

对数函数模型的定义:


恰当选择自变量将问题的目标表示成自变量的函数f(x)=mlogax+n(m、n、a为常数,m≠0,a>0,a≠1)的形式,进而结合对数函数的性质解决问题。


对数函数模型解析式


f(x)=mlogax+n(m、n、a为常数,m≠0,a>0,a≠1)



用函数模型解函数应用题的步骤:


1.审题:弄清题意,分清条件和结论,确定数量关系,初步选择数学模型;
2.建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;
3.求模:求解数学模型,得出数学结论;
4.还原:将数学问题还原为实际问题的意义。



本文来自:逍遥右脑记忆 /gaozhong/1000954.html

相关阅读:高考数学复习:系统梳理 重点掌握
高中数学学习方法:高二数学复习八大原则
高中数学:扇形的面积公式_高中数学公式
科学把握数学新课标
三角函数图象性质