欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

组合

编辑: 路逍遥 关键词: 高二 来源: 记忆方法网
1.3组合
(第一课时)

目标:
1.理解组合的意义,掌握组合数的计算公式;
2.能正确认识组合与排列的联系与区别
重点:
理解组合的意义,掌握组合数的计算公式
教学过程
一、复习引入:
1.排列的概念:
从 个不同元素中,任取 ( )个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从 个不同元素中取出 个元素的一个排列
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;
(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同
2.排列数的定义:
从 个不同元素中,任取 ( )个元素的所有排列的个数叫做从 个元素中取出 元素的排列数,用符号 表示
注意区别排列和排列数的不同:“一个排列”是指:从 个不同元素中,任取 个元素按照一定的顺序排成一列,不是数;“排列数”是指从 个不同元素中,任取 ( )个元素的所有排列的个数,是一个数 所以符号 只表示排列数,而不表示具体的排列
3.排列数公式及其推导:
( )
全排列数: (叫做n的阶乘)
二、讲解新课:
1 组合的概念:一般地,从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合
说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同
2.组合数的概念:从 个不同元素中取出 个元素的所有组合的个数,叫做从 个不同元素中取出 个元素的组合数.用符号 表示.
3.组合数公式的推导:
(1)一般地,求从n个不同元素中取出m个元素的排列数 ,可以分如下两步:① 先求从n个不同元素中取出m个元素的组合数 ;② 求每一个组合中m个元素全排列数 ,根据分步计数原理得: = .
(2)组合数的公式:

例子:
1、计算:(1) ; (2) ;
(1)解: =35;
(2)解法1: =120.
解法2: =120.
2、求证: .
证明:∵





3、在52件产品中,有50件合格品,2件次品,从中任取5件进行检查.
(1)全是合格品的抽法有多少种?
(2)次品全被抽出的抽法有多少种?
(3)恰有一件次品被抽出的抽法有多少种?
(4)至少有一件次品被抽出的抽法有多少种?
4、名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?
解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有 , , ,
所以,一共有 + + =100种方法.
解法二:(间接法)

课堂小节:本节课学习了组合的意义,组合数的计算公式
课堂练习:
课后作业:
1.2.2组合
(第二课时)

教学目标:
1 掌握组合数的两个性质;
2.进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题
教学重点:
掌握组合数的两个性质
教学过程
一、复习引入:
1 组合的概念:一般地,从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合
说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同
2.组合数的概念:从 个不同元素中取出 个元素的所有组合的个数,叫做从 个不同元素中取出 个元素的组合数.用符号 表示.
3.组合数公式的推导:
(1)一般地,求从n个不同元素中取出m个元素的排列数 ,可以分如下两步:① 先求从n个不同元素中取出m个元素的组合数 ;② 求每一个组合中m个元素全排列数 ,根据分步计数原理得: = .
(2)组合数的公式:

二、讲解新课:
1 组合数的性质1: .
一般地,从n个不同元素中取出 个元素后,剩下 个元素.因为从n个不同元素中取出m个元素的每一个组合,与剩下的n ? m个元素的每一个组合一一对应,所以从n个不同元素中取出m个元素的组合数,等于从这n个元素中取出n ? m个元素的组合数,即: .在这里,主要体现:“取法”与“剩法”是“一一对应”的思想
证明:∵
又 ,∴
说明:①规定: ;
②等式特点:等式两边下标同,上标之和等于下标;
③ 或 .
2.组合数的性质2: = + .
一般地,从 这n+1个不同元素中取出m个元素的组合数是 ,这些组合可以分为两类:一类含有元素 ,一类不含有 .含有 的组合是从 这n个元素中取出m ?1个元素与 组成的,共有 个;不含有 的组合是从 这n个元素中取出m个元素组成的,共有 个.根据分类计数原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.
证明:

∴ = + .
3.例子
1.(1)计算: ;
(2)求证: = + + .
解:(1)原式 ;
证明:(2)右边 左边
2.解方程:(1) ;(2)解方程: .
解:(1)由原方程得 或 ,∴ 或 ,
又由 得 且 ,∴原方程的解为 或
上述求解过程中的不等式组可以不解,直接把 和 代入检验,这样运算量小得多.
(2)原方程可化为 ,即 ,∴ ,
∴ ,
∴ ,解得 或 ,
经检验: 是原方程的解
3. 有同样大小的4个红球,6个白球。
(1)从中任取4个,有多少种取法?
(2)从中任取4个,使白球比红球多,有多少种取法?
(3)从中任取4个,至少有一个是红球,有多少种取法?
(4)假设取1个红球得2分,取1个白球得1分。从中取4个球,使总分不小于5分的取法有多少种?
课堂小节:本节课学习了组合数的两个性质
课堂练习:
课后作业:
1.2.2组合
(第三课时)

教学目标:
1、进一步巩固组合、组合数的概念及其性质;
2、能够解决一些组合应用问题
教学重点:
解决一些组合应用问题
教学过程
一、复习引入:
1 组合的概念:一般地,从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合
说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同
2.组合数的概念:从 个不同元素中取出 个元素的所有组合的个数,叫做从 个不同元素中取出 个元素的组合数.用符号 表示.
3.组合数公式的推导:
(1)一般地,求从n个不同元素中取出m个元素的排列数 ,可以分如下两步:① 先求从n个不同元素中取出m个元素的组合数 ;② 求每一个组合中m个元素全排列数 ,根据分步计数原理得: = .
(2)组合数的公式:

4.组合数的性质1: .
5.组合数的性质2: = + .
二、讲解新课:
例子
1.(1)把n+1个不同小球全部放到n个有编号的小盒中去,每小盒至少有1个小球,共有多少种放法?
(2)把n+1相同的小球,全部放到n个有编号的小盒中去,每盒至少有1个小球,又有多少种放法?
(3)把n+1个不同小球,全部放到n个有编号的小盒中去,如果每小盒放进的球数不限,问有多少种放法?

2.从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?
解:分为三类:1奇4偶有 ; 3奇2偶有 ; 5奇1偶有 ,
∴一共有 + + .
3.现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其 中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?
解:我们可以分为三类:
①让两项工作都能担任的青年从事英语翻译工作,有 ;
②让两项工作都能担任的青年从事德语翻译工作,有 ;
③让两项工作都能担任的青年不从事任何工作,有 ,
∴一共有 + + =42种方法.
4.甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表 ?
解法一:(排除法) .
解法二:分为两类:一类为甲不值周一,也不值周六,有 ;
另一类为甲不值周一,但值周六,有 ,
∴一共有 + =42种方法.
5.6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?
解:第一步:从6本不同的书中任取2本“捆绑”在一起看成一个元素有 种方法;
第二步:将5个“不同元素(书)”分给5个人有 种方法.
根据分步计数原理,一共有 =1800种方法
6. 从6双不同手套中,任取4只,
(1)恰有1双配对的取法是多少?
(2)没有1双配对的取法是多少?
(3)至少有1双配对的取法是多少?
课堂小节:本节课学习了组合数的应用
课堂练习:

本文来自:逍遥右脑记忆 /gaoer/78091.html

相关阅读:合情推理
基本算法语句
椭圆定义在解题中的应用
基本计数原理
函数的和差积商的导数学案练习题