(一)复习引入
1. 几种常见函数的导数公式
(C )=0 (C为常数). (xn)=nxn-1 (nÎQ). ( sinx )=cosx . ( cosx )=-sinx .
2.和(或差)的导数 (u±v)=u±v.
3.积的导数 (uv)=uv+uv. (Cu)=Cu .
4.商的导数
(二)讲授新课
1.复合函数:
如 y=(3x-2)2由二次函数y=u2 和一次函数u=3x-2“复合”而成的.y=u2 =(3x-2)2 .
像y=(3x-2)2这样由几个函数复合而成的函数,就是复合函数.
练习:指出下列函数是怎样复合而成的.
复合函数的导数
一般地,设函数u=j(x)在点x处有导数u'x=j'(x),函数y=f(u) 在点x的对应点u处有导数y'u=f '(u) ,则复合函数y=f(j(x)) 在点x处也有导数,且 y'x =y'u?u'x.
或写作 f 'x (j(x))=f '(u) j'(x).
复合函数对自变量的求导法则,即复合函数对自变量的导数,等于已知函数对中间变量的函数,乘中间变量对自变量的导数.
例1 求y =(3x-2)2的导数.
解:y'=[(3x-2)2]' =(9x2-12x+4)'=18x-12. 法1
函数y =(3x-2)2又可以看成由y=u2 ,u=3x-2复合而成,其中u称为中间变量.
由于y'u=2u,u'x=3,
因而 y'x=y'u?u'x =2u?3=2u?3=2(3x-2)?3=18x-12.
法2 y'x=y'u?u'x
例2 求y=(2x+1)5的导数.
解:设y=u5,u=2x+1,
则 y'x=y'u?u'x =(u5)'u?(2x+1) 'x=5u4?2=5(2x+1)4?2=10(2x+1)4.
练习1.
求函数 的导数.
例4.
解: 设y=u-4,u=1-3x,则
y'x=y'u?u'x=(u-4)'u?(1-3x)'x=-4u-5?(-3)=12u-5=12(1-3x)-5=
例5.
例6.求 的导数.
解:
例7. 求 的导数.
解法1:
解法2:
(三)课堂小结
复合函数的导数:
本文来自:逍遥右脑记忆 /gaoer/71870.html
相关阅读:基本计数原理
函数的和差积商的导数学案练习题
合情推理
基本算法语句
椭圆定义在解题中的应用