1.知识与技能:
通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2. 过程与方法
让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3.情态与价值
培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
学法:引导学生首先从直角三角形中揭示边角关系: ,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。
教学设想
[创设情景]
如图1.1-1,固定 ABC的边CB及 B,使边AC绕着顶点C转动。 A
思考: C的大小与它的对边AB的长度之间有怎样的数量关系?
显然,边AB的长度随着其对角 C的大小的增大而增大。能否
用一个等式把这种关系精确地表示出来? B C
[探索研究] (图1.1-1)
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有 , ,又 ,
A
则 b c
从而在直角三角形ABC中, C a B
(图1.1-2)
思考:那么对于任意的三角形,以上关系式是否仍然成立?
(由学生讨论、分析)
可分为锐角三角形和钝角三角形两种情况:
如图1.1-3,当 ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD= ,则 ,
C
同理可得 , b a
从而
A c B
(图1.1-3)
思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
(证法二):过点A作 ,
C
由向量的加法可得
则 A B
∴
∴ ,即
同理,过点C作 ,可得
从而
类似可推出,当 ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)从上面的研探过程,可得以下定理
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
[理解定理]:(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使 , , ;
(2) 等价于 , ,
从而知正弦定理的基本作用为:
①已知三角形的任意两角及其一边可以求其他边,如 ;
②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
[例题分析]:
例1.在 中,已知 , , cm,解三角形。
解:根据三角形内角和定理, ;
根据正弦定理, ;
根据正弦定理,
评述:对于解三角形中的复杂运算可使用计算器。
例2.在 中,已知 cm, cm, ,解三角形(角度精确到 ,边长精确到1cm)。
解:根据正弦定理,
因为 < < ,所以 ,或
⑴ 当 时, ,
⑵ 当 时, ,
评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。
[随堂练习]第47页练习1、2题。
例3.已知 ABC中, A , ,求
分析:可通过设一参数k(k>0)使 ,
证明出
解:设 则有 , ,
从而 = =
又 ,所以 =2
评述: ABC中,等式 恒成立。
[补充练习]已知 ABC中, ,求 (答案:1:2:3)
[课堂小结](由学生归纳总结)
(1)定理的表示形式: ;
或 , ,
(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角;
②已知两边和其中一边对角,求另一边的对角。
(五):①课后思考题:在 ABC中, ,这个k与 ABC有什么关系?
本文来自:逍遥右脑记忆 /gaoer/70410.html
相关阅读:基本计数原理
椭圆定义在解题中的应用
合情推理
函数的和差积商的导数学案练习题
基本算法语句