班级________ 姓名_________
【课前热身】
1. 西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( )
A.至少20户 B.至多20户 C.至少21户 D.至多21户
2.某班级从文化用品市场购买了签字笔和圆珠笔共l5支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了多少支?
【考点链接】
应用问题中常见数量关系:
(1)行程类:路程=速度 时间,解题时分清相向、同向、反向、相遇、追及、早到、晚到、顺流、逆流等含义。
(2)工程类:工作量=工作效率 工作时间,在工作量不明确的情况下,一般把工作量看作1.
(3)利润类:利润 = 售价—进价 = 进价 利润率
【典例精析】
例1.在一条笔直的公路上有A、B两地,它们相距150千米,甲、乙两部巡警车分别从A、B两地同时出发,沿公路匀速相向而行,分别驶往B、A 两地.甲、乙两车的速度分别为70千米/ 时、80千米/ 时,设行驶时间为x小时.
(1)从出发到两车相遇之前,两车的距离是多少千米?(结果用含x的代数式表示)
(2)已知两车都配有对讲机,每部对讲机在15千米之内(含15千米)时能够互相通话,求行驶过程中两部对讲机可以保持通话的时间最长是多少小时?
例2.师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求:
(1)徒弟平均每天组装多少辆摩托车(答案取整数)?
(2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同?
例3. 某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.
(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?
(2)该超市为使甲、乙两种商品共80件的总利润(利润 售价 进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.
【当堂反馈】
1、商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折. 如果用27元钱,最多可以购买该商品的件数是 .
2、某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.
(1)求该校八年级学生参加社会实践活动的人数;
(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.
3.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.
(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
【课后精练】
1、“保护环境,人人有责”为了更好的治理巴河,巴中市污水处理厂决定购买A、B两型污水处理设备,共10台,其信息如下表:
单价(万元/台)每台处理污水量(吨/月)
A型12240
B型10200
(1)设购买A型设备x台,所需资金共为W万元,每月处理污水总量为y吨,试写出W与x,y与x的函数关系式.
(2)经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金?
www.
2.下表所示为装运甲、乙、丙三种蔬菜的重量及利润,某汽车公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定要满载,并且每辆汽车只能装一种蔬菜).
甲乙丙
每辆汽车能满载的吨数211.5
每吨蔬菜可获利润(百元)574
(1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?
(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不少于一车),如何装运,可使公司获得最大利润,最大利润是多少?
3、去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
本文来自:逍遥右脑记忆 /chusan/70948.html
相关阅读:相似三角形的应用
锐角三角函数的应用
中考复习反比例函数的图象与性质学案
九年级数学竞赛动态几何问题透视辅导教案
根与系数关系