2、运用概念解决生活中的问题及简单的几何问题
重点:本章概念的理解与运用是本节的重点
教学方法:精讲——提问——思考——练习巩固相结合
教学过程:先安排学生讨论、复习5分钟(4人一组)
一、点和圆的关系
开场引入:提问——怎么用数学语言来描述圆呢?
(以定点为圆心,定长为半径的圆,即要说出圆的两要素:圆心、半径)
一个圆将平面分成三部分(提问:圆将平面分成几个部分呢?)
圆的外部
圆上 (教师画图说明)
圆的内部
因此,点和圆的位置关系有三个(投影)
引入第一个概念:点和圆的关系
二、直线与圆的位置关系又有哪几个?(提问)
画图讲解(如图),判定圆与直线的位置关系:用圆心到直线的距离d和半径R的关系判定。归纳起来六字口诀:“找d”、“求d”、“判定”。
投影二 1、直线与圆的位置关系表
2、例题
三、圆和圆的位置关系:
(第三个我们来复习一下圆和圆的位置关系。提问——圆和圆的位置关系有哪些?)
那么,怎么判断圆和圆的位置关系?
(用圆心距OO1与两个圆的半径的关系判定)
投影三:位置关系(五个)
快速抢答:判断下列情况下圆和圆的位置关系。
1、两圆没有交点 2、两圆只有一个交点 3、两圆有两个交点
4、两个同心圆的位置关系怎样?圆心距为多少?
5、两圆相交时为什么R-r<O1O2<R+r?
四、圆中有关弦、角的定理和性质
投影四:1、垂直于弦的直径,平分这条弦,并且平分这条弦所对的弧。
2、平分弦(不是直径)的直径垂直于这条弦,并且平分它所对的弧。(为什么加“不是直径”)
3、在同圆或等圆中,如果两个圆心角、两条弧、两条弦三组量中有一组量相等,那么其余各组量也相等。
注:1、第2定理中,为什么加“不是直径”?说明(画图)
2、有一残缺弧铁片:找弧的中点、找圆心、找一条直径、将弧四等分。
例题(投影四)
五、圆周角和圆心角的关系
1、提问:一条弧所对的圆周角与圆心角有几种情况?请分别画出。
2、那么,一条弧所对的圆周角于圆心角有什么关系?(投影)
3、例题(投影)
六、切线的判定与性质(提问:切线的性质是什么?怎样判定一条直线就是的⊙O切线?)
投影:1、判定、性质:圆的切线垂直于经过切点的直径。经过直径的一端并且垂直于这条直径的直线是圆的切线
2、分析一道题
七、三角形的内切圆和外接圆
1、作三角形的内切圆和外接圆,引出内心、外心概念。
2、内心到 距离相等,外心到 距离相等。
3、已知O是△ABC的外心,∠A=80°,求∠BOC的度数。
本文来自:逍遥右脑记忆 /chusan/59009.html
相关阅读:锐角三角函数的应用
根与系数关系
中考复习反比例函数的图象与性质学案
九年级数学竞赛动态几何问题透视辅导教案
相似三角形的应用