1.利用根的定义构造
当已知等式具有相同的结构,就可把某两个变元看成是关于某个字母的一元二次方程的两根.
2.利用韦达定理逆定理构造
若问题中有形如 , 的关系式时,则 、 可看作方程 的两实根.
3.确定主元构造
对于含有多个变元的等式,可以将等式整理为关于某个字母的一元二次方程.
成功的构造是建立在敏锐的观察、恰当的变形、广泛的联想的基础之上的;成功的构造能收到明快简捷、出奇制胜的效果.
注: 许多数学问题表面上看难以求解,但如果我们创造性地运用已知条件,以已知条件为素材,以 所求结论为方向,有效地运用数学知识,构造出一种辅助问题及其数学形式,就能使问题在新的形式下获得简解,这就是解题中的“构造”策略,构造图形,构造方程、构造函数、构造反例是常用构造方法.
【例题求 解】
【例1】 已知 、 是正整数,并且 , ,则 .
思路点拨 ,变形题设条件,可视 、 为某个一元二次方程两根,这样问题可从整体上获得简解.
【例2】 若 ,且有 及 ,则 的值是( )
A. B. C. D.
思路点拨 第二个方程可变形为 ,这样两个方程具有相同的结构,从利用定义构造方程入手.
【例3】 已知实数 、 满足 ,且 ,求 的取值范围.
思路点拨 由两个等式可求出 、 的表达式,这样既可以从配方法入手,又能从构造方程的角度去探索,有较大的思维空间.
【例4】 已知实数 、 、 满足 , .
(1)求 、 、 中最大者的最小值;
(2)求 的最小值.
思路点拨 不妨设a≥b,a≥c,由条件得 , .构造以b、c为实根的一元二次方程,通过△≥0探求 的取值范围,并以此为基础去解(2).
注: 构造一元二次方程,在问题有解的前提下,运用判 别式△≥0,建立含参数的不等式,
缩小范围逼近求解,在求字母的取值范围,求最值等方面有广泛的应用.
【例5】 试求出这样的四位数,它的前两位数字与后两位数字分别组成的二位数之和的平方,恰好等于这个四位数. (2003年全国初中数学联赛试题)
思路点拨 设前后两个二位数分别为 , ,则有 ,将此方程整理成关于 (或 )的一元二次方程,在方程有解的前提下,运用判别式确定 (或 )的取值范围.
学历训练
1.若方程 的两个实数根的倒数和是 ,则 的取值范围是 .
2.如图,在Rt△ABC中,斜边AB=5,CD⊥AB,已知BC、AC是一元二次方程 的两个根,则m的值是 .
3.已知 、 满足 , ,则 = .
4.已知 , ,,则 的值为( )
A.2 B.-2 C.-1 D. 0
5.已知梯形ABCD的对角线AC与BD相交于点O,若S△AOB=4,S△COD=9,则四边形ABCD的面积S的最小值为( )
A.21 B. 25 C.26 D. 36
6.如图,菱形A6CD的边长是5,两条对角线交于O点,且AO、BO的长分别是关于 的方程的根,则m的值为( )
A.一3 B.5 C.5或一3 n一5或3
7.已知 , ,其中 、 为实数,求 的值.
8.已知 和 是正整数,并且满足条件 , ,求 的值.
9.已知 , ,其中m、n为实数,则 = .
10.如果 、 、 为互不相等的实数,且满足关系式 与 ,那么 的取值范围是 .
11.已知 , 则 = , = .;
12.如图,在Rt△ABC中,∠ACB=90°,AC=b,AB=c,若D、E分别是AB和AB延长线上的两点,BD=BC,CE⊥CD,则以AD和AE的长为根的一元二次方程是 .
13.已知 、 、 均为实数,且 , ,求 的最小值.
14.设实数 、 、 满足 ,求 的取值范围.
15.如图,梯形ABCD中,AD∥BC,AD=AB, ,梯形的高AE= ,且 .
(1)求∠ B的度数;
(2)设点M为梯形对角线AC上一点,DM的延长线 与BC相交于点F,当 ,求作以CF、DF的长为根的一元二次方程.
16.如图,已知△ABC和平行于BC的直线DE,且△BDE的面积等于定值 ,那么当 与△BDE之间满足什么关系时,存在直线DE,有几条?
本文来自:逍遥右脑记忆 /chusan/58166.html
相关阅读:根与系数关系
九年级数学竞赛动态几何问题透视辅导教案
中考复习反比例函数的图象与性质学案
相似三角形的应用
锐角三角函数的应用