6.2 二次函数的图像和性质(3)
学习目标:
1、能解释二次函数 的图像的位置关系;
2、体会本节中图形的变化与 图形上的点的坐标变化之间的关系(转化),感受形数 结合的数学思想等。
学习重点与难点:
对二次函数 的图像的位置关系解释和研究问题的数学方法的感受是学习重点;难点是对数学问题研究问题方法的感受和领悟。
学习过程:
一、知识准备
本节的学习的内容是本P12-P14的内容,内容较长,本上问题较多,需要你操作、观察、思考和概括,请你注意:学习时要圈、点、勾、画,随时记录甚至批注本,想想“那个人”是如何研究出的。你有何新的发现呢?
二、学习内容
1.思考:二次函数 的图象是个什么图形?是抛物线吗?为什么?(请你仔细看本P12-P13,作出合理的解释)
x…-3-2-1
0123…
……
……
……
类似的:二次函数 的图象与函数 的图象有什么关系?
它的对称轴、顶点、最值、增减性如何?
2.想一想:二次函数 的图象是抛物线吗?如果结合下表和看本P13-P14你的解释是什么?
x
…-8-7-6-3-2-10123 456…
……
……
……
类似的:二次函数 的图象与二次函数 的图象有什么关系 ?它的对称轴、顶点呢?它的对称轴、顶点、最值、增减性如何呢
三、知识梳理
1、二次函数 图像的形状,位置的关系是:
2、它们的性质是:
四、达标测试
⒈将抛物线y=4x2向上平移3个单位,所得的抛物线的函数式是 。
将抛物线y=-5x2+1向下平移5个单位,所得的抛物线的函数式是 。
将函数y=-3x2+4的图象向 平移 个单位可得y=-3x2的图象;
将y=2x2-7的图象向 平移 个单位得到可由 y=2x2的图象。
将y=x2-7的图象向 平移 个单位 可得到 y=x2+2的图象。
2.抛物线y=-3(x-1)2可以看作是抛物线y=-3x2沿x 轴 平移了 个单位;
抛物线y=-3(x+1)2可以看作是抛物线y=-3x2沿x轴 平移了 个单位.
抛物线y=-3(x-1)2的顶点是 ;对称轴 是 ;
抛物线y=-3(x+1)2的顶点是 ;对称轴是 .
3.抛物线y=-3(x-1)2在对称轴(x=1)的左侧,即当x 时, y随着x的增大而 ; 在对称轴(x=1)右侧,即当x 时, y随着x的增大而 .当x= 时,函数y有最 值,最 值是 ;
二次 函数y=2x2+5的图像是 ,开口 ,对称轴是 ,当x= 时,y有最 值,是 。
4.将函数y=3 (x-4)2的图象沿x轴对折后得到的函数解析式是 ;
将函数y=3(x-4)2的 图象沿y轴对折后得到的函数解析式是 ;
5.把抛物线y=a(x-4)2向左平移6个单位后得到抛物线y=- 3(x-h)2的图象,则a= ,h= .
函数y=(3x+6)2的图象是由函数 的图象向左平移5个单位得到的,其图象开口向 ,对称轴是 ,顶点坐标是 ,当x 时,y随x的增大而增大,当x= 时,y有最 值是 .
6.已知二次函数y=ax2+c ,当x取x1,x2(x1≠x2), x1,x2分别是A,B两点的横坐标)时,函数值相等,
则当x取x1+x2时,函数值为 ( )
A. a+c B. a-c C. ?c D. c
7.已知二次函数y=a(x-h)2, 当x=2时有最大值,且此函数的图象经过点(1,-3),求此函数的解析式,并指出当x为何值时,y随x的增大而增大?
本文来自:逍遥右脑记忆 /chusan/34275.html
相关阅读:中考复习反比例函数的图象与性质学案
锐角三角函数的应用
根与系数关系
相似三角形的应用
九年级数学竞赛动态几何问题透视辅导教案