一、准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题
概念抽象、符号术语多是集合单元的一个显著特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。这些概念、关系和表示方法,都可以作为求解集合问题的依据、出发点甚至是突破口。因此,要想学好集合的内容,就必须在准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题上下功夫。
二、注意弄清集合元素的性质,学会运用元素分析法审视集合的有关问题
众所周知,集合可以看成是一些对象的全体,其中的每一个对象叫做这个集合的元素。集合中的元素具有“三性”:
(1)、确定性:集合中的元素应该是确定的,不能模棱两可。
(2)、互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个。
(3)、无序性:集合中的元素是无次序关系的。
集合的关系、集合的运算等等都是从元素的角度予以定义的。因此,求解集合问题时,抓住元素的特征进行分析,就相当于牵牛抓住了牛鼻子。
三、体会集合问题中蕴含的数学思想方法,掌握解决集合问题的基本规律
布鲁纳说过,掌握数学思想可使得数学更容易理解和记忆,领会数学思想是通向迁移大道的“光明之路”。集合单元中,含有丰富的数学思想内容,例如数形结合的思想、分类讨论的思想、等价转化的思想、正难则反的思想等等,显得十分活跃。在学习过程中,注意对这些数学思想进行挖掘、提炼和渗透,不仅可以有效地掌握集合的知识,驾驭集合问题的求解,而且对于开发智力、培养能力、优化思维品质,都具有十分重要的意义。
四、重视空集的特殊性,防止由于忽视空集这一特殊情况导致的解题失误
空集是一个十分重要的特殊集合,它具备“空集虽空,但空有所为”的功能。在解题的过程中,要时刻注意有无可能存在空集的情况,否则极易导致解题失误。这一点,必须引起我们的高度重视。
本文来自:逍遥右脑记忆 /xuexi/199706.html
相关阅读:叔本华:读书要有选择
英语学习中的几个误区
最创意暑期:发明金点子征集
辨析题解答方法
解惑篇--为什么会做的题不一定全做对?