第三章 指数函数与对数函数
§3.1正整数指数函数(学案)
[学习目标]
1、知识与技能
(1) 结合实例,了解正整数指数函数的概念.
(2)能够求出正整数指数函数的解析式,进一步研究其性质.
2、 过程与方法
(1)借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.
(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.
3、情感.态度与价值观
通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.
[学习重点]: 正整数指数函数的定义.
[学习难点]:正整数指数函数的解析式的确定.
[学习教具]:直尺、多媒体
[学习方法]:学生观察、思考、探究.
[学习过程]
【新课导入】
[互动过程1]
问题1.某种细胞分裂时,由1个分裂成2个,2个分裂成4个…
一直分裂下去.
(1)请你用列表表示1个细胞分裂次数分别为1,2,3,4,5,6,7,8时,
得到的细胞个数;
(2)请你用图像表示1个细胞分裂的次数n( )与得到的细胞
个数y之间的关系;
(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用
科学计算器计算细胞分裂15次、20次得到的细胞个数.
分裂次数
细胞个数
探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数? 细胞个数 随着分裂次数 发生怎样变化?你从哪里看出?
小结:从本题中可以看出我们得到的细胞分裂个数都是___________数,而且___________是变量,取值为________数.细胞个数 与分裂次数 之间的关系式为_______________细胞个数 随着分裂次数 的增多而逐渐___________.
[互动过程2]
问题2.电冰箱使用的氟化物的释放破坏了大气上层
的臭氧层,臭氧含量Q近似满足关系式Q=Q00.9975 t,
其中Q0是臭氧的初始量,t是时间(年),这里设Q0=1.
(1)计算经过20,40,60,80,100年,臭氧含量Q;
(2)用图像表示每隔20年臭氧含量Q的变化;
(3)试分析随着时间的增加,臭氧含量Q是增加还是减少.
探究:从本题中得到的函数来看,自变量和函数值分别又是什么?
此函数是什么类型的函数?,臭氧含量Q随着时间的增加发生怎样变化
?你从哪里看出?
小结:从本题中可以看出我们得到的臭氧含量Q都是______________数,而且________是变量,取值为_______数.臭氧含量Q近似满足关系式____________________随着时间的增加,臭氧含量Q在逐渐_________________.
[互动过程3]
上面两个问题所得的函数有没有共同点?你能统一吗?自变量的取值范围又是什么?这样的函数图像又是什么样的?为什么?
正整数指数函数的定义:
一般地,函数_____________________________叫作正整数指数函数,其中_________是自变量,定义域是________________________.
说明: 1.正整数指数函数的图像是_____________,这是因为___________________.
2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.
例题:某地现有森林面积为1000 ,每年增长5%,经过 年,森林面积为 .写出 , 间的函数关系式,并求出经过5年,森林的面积.
分析:要得到 , 间的函数关系式,可以先一年一年的增长变化,找出规律,再写出 , 间的函数关系式.
解:
练习:课本练习1,2
补充例题:高一某学生家长去年年底到银行存入2000元,银行月利率为2.38%,那么如果他第n个月后从银行全部取回,他应取回钱数为y,请写出n与y之间的关系,一年后他全部取回,他能取回多少?
补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元,那么第n年后该厂的年产值为多少?
课后作业:课本习题3-1 1,2,3
本文来自:逍遥右脑记忆 /gaoyi/59115.html
相关阅读:苏教版高中数学必修1全套学案
二次函数性质的再研究
函数
几类不同增长的函数模型
分数指数幂、分数指数