映射的概念
[自学目标]
1.了解映射的概念,函数是一类特殊的映射
2.会判断集合A 到集合B的关系是否构成映射
[知识要点]
1.正确理解“任意唯一”的含义
2.函数与映射的关系,函数是一类特殊的映射
[预习自测]
例题1.下列图中,哪些是A到B的映射?
例2.根据对应法则,写出图中给定元素的对应元素
⑴f:x→ 2x+1 ⑵f:x→ x2-1
A B A B
例3.(1)已知f是集合A={a,b}到集合B={c,d}的映射,求这样的f的个数
(2)设={-1,0,1},N={2,3,4},映射f:→N对任意x∈都有x+f(x)是奇数,这样的映射的个数为多少?
[内练习]
1.下面给出四个对应中,能构成映射的有 ( )
⑴ ⑵ ⑶ ⑷
(A) 1个 (B) 2个 (C) 3个 (D) 4个
2.判断下列对应是不是集合A到集合B的映射?
(1)A={x-1≤x≤1},B={y0≤y≤1},对应法则是“平方”
(2)A=N,B=N+,对应法则是“ f:x→x-3”
(3)A=B=R,对应法则是“f:x→3x+1”
(4)A={xx是平面α内的圆}B={xx是平面α内的矩形},对应法则是“作圆的内接矩形”
3.集合B={-1,3,5},试找出一个集合A使得对应法则f: x→3x-2是A到B的映射
4.若A={(x,y)}在映射f下得集合B={( 2x-y,x+2y)}, 已知C={(a,b)}在 f下得集合D={(-1,2)},求a,b的值
5.设集A={x0≤x≤2},B={y1≤y≤2},在下图中能表示从集A到集B的映射的是( )
A. B. C. D.
[归纳反思]
1.构成映射的三要素:集合A , 集合B ,映射法则f
2.理解映射的概念的关键是:明确“任意”“唯一”的含义
[巩固提高]
1.关于映射下列说法错误的是 ( )
(A) A中的每个元素在 B 中都存在元素与之对应
(B) 在B存在唯一元素和 A 中元素对应
(C) A中可以有的每个元素在 B 中都存在元素与之对应
(D) B中不可以有元素不被A中的元素所对应。
2.下列从集合A到集合B的对应中,是映射的是 ( )
(A) A={0,2} , B={0,1},f:x y=2x
(B) A={-2,0,2},B={4} ,f:x y=2x
(C) A=R ,B={y│y<0} ,f:x y=
(D) A=B=R , f:x y=2x+1
3.若集合P={x│0≤x≤4} ,Q={y│0≤y≤2},则下列对应中,不是
从P到Q的映射的 ( )
(A) y= x (B) y= x (C) y= x (D) y= x
4.给定映射f:(x,y)(x+2y,2x—y),在映射f作用下(3,1)的象是
5.设A到B的映射f1:x2x+1,B到C的映射f2:yy2—1,则从A到C的映射是f:
6.已知元素(x,y)在映射f下的原象是(x+y,x—y),则(1,2)在f下的象
7.设A={—1,1,2},B={3,5,4,6},试写出一个集合A到集合B的映射
8.已知集合A={1,2,3},集合B={4,5},则从集合A到B的映射有 个。
9.设映射f:AB,其中A=B={(x,y)x∈R,y∈R},f:(x,y)(3x-2y+1,4x+3y-1)
(1)求A中元素(3,4)的象
(2)求B中元素(5,10)的原象
(3)是否存在这样的元素(a,b)使它的象仍然是自己?若有,求出这个元素。
10.已知A={1,2,3,k},B={4,7,a4,a2+3a},a∈N*,k∈N*,x∈A,y∈B,f:xy=3x+1是定义域A到值域B的一个函数,求a,k,A,B。
本文来自:逍遥右脑记忆 /gaoyi/35602.html
相关阅读:函数
苏教版高中数学必修1全套学案
分数指数幂、分数指数
二次函数性质的再研究
几类不同增长的函数模型