欢迎来到记忆方法网-免费提供各种记忆力训练学习方法!

高三文科数学公式总结

编辑: 路逍遥 关键词: 高三学习指导 来源: 记忆方法网

【摘要】到了高三总复习的时候发现有许多的数学知识点还没有理解,而这些知识点往往就是必考的知识点,欢迎同学们来到的高三数学知识点频道复习高三文科数学公式,祝愿大家都能有个好成绩!

一、对数函数

log.a(MN)=logaM+logN

loga(M/N)=logaM-logaN

logaM^n=nlogaM(n=R)

logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)

二、简单几何体的面积与体积

S直棱柱侧=c*h(底面周长乘以高)

S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)

设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*h

S圆柱侧=c*l

S圆台侧=1/2*(c+c′)*l=兀*(r+r′)*l

S圆锥侧=1/2*c*l=兀*r*l

S球=4*兀*R^3

V柱体=S*h

V锥体=(1/3)*S*h

V球=(4/3)*兀*R^3

三、两直线的位置关系及距离公式

(1)数轴上两点间的距离公式AB=x2-x1

(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式

AB=sqr[(x2-x1)^2+(y2-y1)^2]

(3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=Ax0+By0+C/sqr

(A^2+B^2)

(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=C1-

C2/sqr(A^2+B^2)

同角三角函数的基本关系及诱导公式

sin(2*k*兀+a)=sin(a)

cos(2*k*兀+a)=cosa

tan(2*兀+a)=tana

sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana

sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana

sin(兀+a)=-sina

sin(兀-a)=sina

cos(兀+a)=-cosa

cos(兀-a)=-cosa

tan(兀+a)=tana

四、二倍角公式及其变形使用

1、二倍角公式

sin2a=2*sina*cosa

cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2

tan2a=(2*tana)/[1-(tana)^2]

2、二倍角公式的变形

(cosa)^2=(1+cos2a)/2

(sina)^2=(1-cos2a)/2

tan(a/2)=sina/(1+cosa)=(1-cosa)/sina

五、正弦定理和余弦定理

正弦定理:

a/sinA=b/sinB=c/sinC

余弦定理:

a^2=b^2+c^2-2bccosA

b^2=a^2+c^2-2accosB

c^2=a^2+b^2-2abcosC

cosA=(b^2+c^2-a^2)/2bc

cosB=(a^2+c^2-b^2)/2ac

cosC=(a^2+b^2-c^2)/2ab

tan(兀-a)=-tana

sin(兀/2+a)=cosa

sin(兀/2-a)=cosa

cos(兀/2+a)=-sina

cos(兀/2-a)=sina

tan(兀/2+a)=-cota

tan(兀/2-a)=cota

(sina)^2+(cosa)^2=1

sina/cosa=tana

两角和与差的余弦公式

cos(a-b)=cosa*cosb+sina*sinb

cos(a-b)=cosa*cosb-sina*sinb

两角和与差的正弦公式

sin(a+b)=sina*cosb+cosa*sinb

sin(a-b)=sina*cosb-cosa*sinb

两角和与差的正切公式

tan(a+b)=(tana+tanb)/(1-tana*tanb)

tan(a-b)=(tana-tanb)/(1+tana*tanb)

高三文科数学公式,是数学解题的基础,同学们做任何事情应该脚踏实地,学习数学也是如此,应该先记牢高三文科数学公式,在谈提高数学解题能力。

总结:整理的高三文科数学公式总结帮助同学们复习以前没有学会的数学知识点,请大家认真阅读上面的文章,也祝愿大家都能愉快学习,愉快成长!

相关阅读:

浏览了本文的读者也浏览了:

更多精彩内容尽在: > > > >


本文来自:逍遥右脑记忆 /gaosan/153211.html

相关阅读:高三学生家长 请减少不必要的督促
2014年高考政治复习指导:企业
十一国庆节期间 高三如何进行高效学习
提高高考数学成绩的三大学习方法
高三地理抓住四大点得高分